IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
““AS IS BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by

Radio Shack, including but not limited to any interruption of service, loss of

business or anticipatory profits or consequential damages resulting from the use

or operation of such computer or computer programs.

NOTE: Good data processing procedure dictates that the user test the program,
run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

LIMITED WARRANTY

Radio Shack warrants for a period of 90 days from the date of delivery
to customer that the computer hardware described herein shall be free
from defects in material and workmanship under normal use and service.
This warranty shall be void if this unit’s case or cabinet is opened or if
the unit is altered or modified. During this period, if a defect should
occur, the product must be returned to a Radio Shack store or dealer
for repair. Customer’s sole and exclusive remedy in the event of defect
is expressly limited to the correction of the defect by adjustment, re-
pair or replacement at Radio Shack’s election and sole expense, except
there shall be no obligation to replace or repair items which by their
nature are expendable. No representation or other affirmation of fact,
including but not limited to statements regarding capacity, suitability
for use, or performance of the equipment, shall be or be deemed to be a
warranty or representation by Radio Shack, for any purpose, nor give
rise to any liability or obligation of Radio Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT,
THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-
POSE AND IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR
LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL, CONSE-
QUENTIAL OR OTHER SIMILAR DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACK EA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U K
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE. N.SW 2116 5140 NANINNE WEST MiDLANDS WSI0 1N

PRINTED IN U.S.A,

Written by James Farvour

Microsoft BASIC
Decoded & Other Mysteries

Foreword by Harvard Pennington

Edited by Jim Perry

Graphics by John Teal
Cover by Harvard Pennington

TRS-80 Information Series Volume 2

Contents

Foreword
Chapter i. introduction
Overview

Memory Utilization
Communications Region
Level 11 Operation
Input Phase
Inldnr;mlum & hXeLqun

Verb Acuon. ..

Arithmetic & Mmh

[O Drivers

System Uulities. .

IPL

Reset anemng (mm dlsL)

Reset Processing (disk)
Disk BASIC

Chapter 2: Subroutines
1,0 Calling Sequences
Keyboard Input. ..

Scan Keyboard . .
Wait For Keyboard
Wait For Line. .
Video Output

Video Display
Clear Screen

Blink Asterisk
Printer Qutput

Print Character
Get Printer Status
Cassette 1/O .

Select & Turn On Motor.

Write Leader .
Read Leader

Read One Byte
Write One Byte.
Conversion Routines
Data Type Conversions
FP To Integer
Integer To SP .
Integer TO DP
ASCII To Numeric .
ASCII To Integer
ASCII To Binary ..
ASCII To DP
Binary To ASCII

HL To ASCII & Dlspla).

Integer To ASCII. .
FP To ASCII
Arithmetic Routines
Integer Routines
Integer Addition
Integer Subtraction. .
Integer Muluplication
Integer Division
Integer Comparison

2

> zle Precision Routines
=2 Addition

SP Subtraction

SP Multiply

SP Divide

SP Comparison
Double Precision Rounms
DP Addition

DP Subtraction. .
DP Multiply

DP Division .

DP Comparison
Math Routines
Absolute Value
Return Integer. ..

Arctangent

Cosine .

Raise Natural Base
Raise X To Power Of Y
Natural Log.

FP To Integer

Reseed Random Seed
Random Number . ..
Sine

Square Ruol

Tangent . .
Function Dcnvauun .
System Functions
Compare Symbol
Examine Next Symbol
Compare DE:HL

Test Data Mode .
DOS Function CALL.
Load DEBUG
Interrupt Entry Point.
SP In BC:DE To WRAI .

SP Pointed To By HL ' \NRAI

SP Into BC:DE

SP From WRA1 Into BC:DE

WRALI To Stack.

General Purpose Move
Variable Move
String Move
BASIC Functions.

Search For Line Number
Find Address Of Variable
GOSUB

TRON

TROFF

RETURN

Write Message

Amount Of Free Memory
Print Message

Number Representation

Chapter 3 Cassette & Disk

ArRe v}

=%

2
5
5
35
2

=

Cassette | O

Cassette Format . .
SYSTEM Format

Disk I/0. . .
Disk Controller Commands . ..
Disk Programming Details
DOS Exits

Disk BASIC Exits

Disk Tables

Disk Track Format ..
Granule Allocation Table
Hash Index Table.

Disk DCB

Disk Directory

Chapter 4: Addresses & Tables
System Memory Map
Internal Tables
Reserved Word List.
Precedence Operator Values
Arithmetic Routines
Data Conversion Routines
Verb Action Routines .

Error Code Table

External Tables

Mode Table. . .

Program Statement Table

Variable List Table

Literal String Pool Table,

Communications Region .

DCB Descriptions

Video DCB

Keyboard DCB. .

Printer DCB .

Interrupt Vectors.

Memory Mapped I/0 .

Stack Frame Configurations . .
FOR Stack
GOSUB Stack ..
Expression Evaluation.

DOS Request Codes

Chapter 5: Example |
A BASIC SORT Verb

Chapter 6: Example 2
BASIC Overlay Program

Chapter 7: BASIC Decoded.
The New ROMs .

Chapter 8: BASIC Decoded. . ..
Comments Disassembled ROMs

58
58

61
63

Microsoft BASIC p
& Other Mysterigs ~c-0d9ed

Acknowledgmeng

This booa fas been 2long yme in
help.advice and suppory o
been possible. In pantiey
Montoya for her days

is creation, without the
f many people it would not have
ar thanks are due to Rosemary
of keyboarding, David Moore for
De Diemar, Mary and
the Electric Pencil files
hour message service,

This b(rkr\fas‘ Produced with the aid of several TRS-80
;om!mll ;robra“t:z%_..ic Spinterm printer, the Electric
encil Procesier with a special communications

package to interfaceio g Itek Qua
lots of coffee and Cigaeges Quadritek typesetter, plus

Copyright 1981 Janeg g0 -

Microsoft BASIC Degpged & Oth
ISBN 0 - 936200 -8y Other Mysteries

The small print

All rights reserved. Nofy of hic ook may be reprodu

means w uhuw;)w expre: permission of the pu::uhr:“;\r:\m.[::
programs are for personbpe o, Every reasonable effort hs been
made 10 ensure aCCUrIhgygy i o book, but the author and
publisher car assume no Mwesibility for any errors or ommisions. ‘\’4‘
fiability s assumed for Mgeg resulhing from the use of imfopmse..
contained herein. omaon

First Edition
First Prinung

January 1981

Published by

LJG Computer Ryjces

1260 W Foothill Blg

Upland, CA 917864 - 4

Microsoft is a rqur:rrh"k of the
Microson Corporation.

;a:;oh;c:";"i{’v‘v‘k trademarks of the Tandy Corp

BASIC i tademary £ (LTS o Arpaen Ine

Foreword

A little o or a year ago, | said to Jim Farvour, 'Jim, why
don’t you write a book about Microsoft BASIC and the
TRS 807 You have the talent and the expertise and
thousands of TRS-80 owners need help, especially me!".
Needless to say, he agreed. Now it’s one thing to SAY you
are going to write a book and quite another thing to
actually do it.

Writing a hook requires fantastic disipline, thorough
knowledge of the subject matter, talent and the ability to
communicate with the reader. Jim Farvour has all of the
above.

This is no ordinary book. It is the most complete, clear.
detailed explanation and documentation you will see on
this or any similar subject.

There have been other books and pamphlets purporting to
explain the TRS-80 BASIC interperter and operating
system. They have had some value, but only to
experienced machine language programers - and even’
then these books had many short-comings.

This book will delight both professional and beginner.
Besides walking you through power-up and reset (with and
without disk) there are detailed explanations of every
single area of the software system's operation, Examples,
tables. and flow-charts complement the most extensively
commented listing you have ever seen. There are over
7000 comments to Microsoft's BASIC interperter and
operating system.

These are not the usual machine language programmer’s
comments whose cryptic and obscure meanings leave
more questions than an wers. These are english
comments that anyone can understand. Not only that, but
when a needs more you will find it
on the next page

This book even has something for anyone running
Microsoft BASIC on a Z-80 based computer. Microsoft,
in its great wisdom, has a system that generates similar
code for similar machines. Although you may find that the
code is organized differently in your Heath or Sorceror the
routines are, for the most part, identical'

Is this a great book? It's an incredible book! It may well be
the most useful book you will ever own,

H.C. Pennington

November 1980

Chapter 1

Introduction

Level II consists of a rudimentary operating system and a
BASIC language intrepreter. Taken together, they are
called the Level I ROM System. There is a extension to
the Level II system called the Disk Operating System
DOS, and also an extension to the BASIC portion of
Level II called Disk BASIC.

Both Level II and DOS are considered independent
operating systems. How the two systems co-exist and co-
operate is a partial subject of this book. The real purpose is
to describe the fundamental operations of a Level 11 ROM
so that assembly language programmers can make effec-
tive use of the system.

A computer without an operating system is of little use.
The reason we need an operating system is to provide a
means of between the and the
user. This means getting it to ’listen’ to the keyboard so
that it will know what we want, and having it tell us what's
going on by putting messages on the video. When we write
programs, which tell the computer what to do, there has to
be aprogram inside the machine that’s listening to us. This
program is called an operating system.

It is impossible to give an exact definition of an operating
system. There are thousands of them, and each has slight
variations that distinguish it from others. These variations
are the result of providing specific user features or making
use of hardware features unique to the machine that the
operating system is designed for. In spite of the differences
between operating systems, the fundamental internal
routines on most are very similar - at least from a
functional point of view.

The common components in a general purpose, single
user system, such as Level II would consist

1. Drivers (programs) for all penpr.«u devices such as the
keyboard, video, printer, and cassette.

2. A language processor capability (such as BASIC, COBOL, o
FORTRAN) of some kind.

J Supporting object time routines for any language provided.
This wouM mcludt math and arithmetic routines, which are

implied by the presence of a language.

4. Ancillary support routines used by the language processor and

its implied routines. These are usually invisible to the user. They

manage resources such as memory and tables, and control access

to peripheral devices.

5. A simple monitoring program that continually monitors the
Keyboard, or other systein ApuL device, 100king for user input.
6. System utility commands. These vary considerably from

system to system. Examples from Level Il 'ould be: EDIT,
LIST CLOAD, etc.

Remember that these definitions are very general. The
exact definition of any individual component is specific to
each operating system. In the case of the Level Il ROMs
we’ll be exploring each of the components in more detail
later on. First we will discuss how the operating system
gets into the machine to begin with.

Generally, there are two ways an operating system can be
loaded. The operating system can be permanently
recorded in a special type of memory called Read Only
Memory (ROM) supplied with the system. In this case the
operating system is always present and needs only to be
entered at its starting point, to initialize the system and
begin accepting commands.

w/,l| ~;:({Q

0S5y s
100 FoR 42) ,:/ﬁ?
WL oL
st INC
DUNZ 009BH ‘\
LD B15H \
D (HL.OCOH

Another way of getting the operating system into the
machine is to read it in from some external storage
medium such as a disk or cassette. In this case however,
we need a program to read the operating system into the
machine. This program is called an Initial Program
Loader (or IPL). and must be entered by hand or exist in
ROM somewhere in the system. For the sake of simplic-
ity, we'll assume that all machines have at least an IPL
ROM or ROM based operating system.

In the TRS-80 Model I we have a combination of both
ROM and disk based operating systems. A Level II
machine has a ROM system which occupies the first | 2K
of addressable memory. When the Power On or Reset
button is pressed control is unconditionally passed to
location 0 or 66 respectively. Stored at these locations are
JUMPS 10 another region of ROM which initiaiizes the
system and then prints the user prompt '"MEMORY
SIZE™

In a Level I1 system with disks, the same ROM program
still occupies the first 12K of memory, however during
Power On or Reset processing another operating system is
read from disk and loaded into memory. This Disk
Operating System (DOS) occupies 5K of RAM starting
at 16K. After being loaded control is then transfered to
DOS which initializes itself and displays the prompt
'DOS READY'. So, even though a ROM operating
system is always present, if the machine has disks another
operating system is loaded also. In this case, the Level II
ROM acts as an IPL ROM.

It should be emphasized that the DOS and ROM oper-
ating systems are complementary and co-operative. Each
provides specific features that the other lacks. Elementary
functions required by DOS are found in ROM, and DOS
contains extensions to the ROM. as well as unique
capabilities of its own

Level II And DOS Overview

Level Il is a stand alone operating system that can run by
itself. It is always present, and contains the BASIC
interpreter plus support routines necessary o execute
BASIC programs. It also has the facility to load programs
from cassette, or save them onto a cassette.

A Disk Operating System, (such as TRSDOS or
NEWDOS) s an extension to Level 11 that is loaded from
disk during the IPL sequence. It differs from Level Il in
several ways. First, it has no BASIC interpreter, in order
to key-in BASIC statements control must be passed from
DOS to Level II. This is done by typing the DOS
command BASIC. As well as transfering control from
DOS to Level II this command also performs important
initialization operations which will be discussed later.
Second, the commands recognized by DOS are usually
disk utility programs not embedded routines - such as
those in Level 1. This means they must be loaded from
disk before they can be used. In turn this means that there
must be an area of RAM reserved for the loading and
execution of these utilities.

Memory Utilization

From the description of DOS and Levet Il we can see that
portions of RAM will be used differently depending on
which operating system is being used. Immediately after
IPL the memory is setup for each of the operating systems
as shown in figure 1.1 below. Notice the position of the
Central Processing Unit (CPU) in each part of the figure.

Leves 11 Level 1t
[(R

<nd ot

Yaere)

Figure 1.1: Memory org; ion after the Initial Program Load.

A Level II system with disks that has had a BASIC
command executed would appear as in figure 1.2,

Region reg: of the
system being used.

The first le of memory is dedicated to Level II and the
C .

Starting at the end of the Communications Region or the
Disk BASIC area. depending on the system being used, is
the part of memory that will be used by Level Il for storing
2 BASIC program and its variables. This part of memory

- <ed by the programmer for keeping assembly
2T A detailed description of this area for
m without disks follows.

FRESIODN

K->

12K =->
Region

16K -

19K -

21K =->

26K —>

>

Figure 1.2: Memory allocation for a system with disks, after s BASIC
command.

Although figure 1.3 shows the sub-divisions of RAM as
fixed they are not! All of the areas may be moved up or
down depending on what actions you perform. Inserting or
deleting a line from a program, for example, causes the
BASIC Program Table (called the Program Statement
Table or PST) to increase or decrease in size. Likewise
defining a new variable would increase the length of the
variables list. Since the orgin of these tables may shift,
their addresses are kept in fixed locations in the Com-
munications Region. This allows the tables to be moved
about as required, and provides a mechanism for letting
other users know where they are.

Level 11 acd
Comm. Region
16K ==>

BASIC
Progran
Table

BASIC
Program

Stack

String Ares

Figure 1.3: Allocation of memory in a Level 11 system without disks.

The Program Statement Table (PST) contains source
statements for a BASIC program in a compressed format
(reserved words have been replaced with tokens repre-
senting their meaning). The starting address for this table
is fixed, but its ending address varies with the size of the
program. As program statements are added or deleted, the
end of the PST moves accordingly. A complete descrip-
tion of this table can be found in chapter 4 (page 44)

Following the PST is the Variable List Tatle (or VLT)
This contains the names and values for all of :he vanables
used in a BASIC program. It is partitioned into four sub-
tables according to the following variable types: simple
variables (non di i d); single dim d lists;
doubley dimensioned lists and triple dimensioned lists
Variable names and their values are stored as they are
encountered during the execution of a program. The
variable table will change in size as new variables are
added to a program, and removing variables will cause the
table to shrink. After a variable is defined it remains in the
table, until the system is reinitialized. For a full descrip-
tion of this table see chapter 4 (page 45).

Not shown in figure 1.3 is the Free Space Listor FSL. Itis
a section of memory that initially extends from the end of
the Communications Region to the lower boundery of the
String Area. There are two parts to this list, the firstis used
to assign space for the PST and VLT. For these areas
space is assigned from low to high memory. The second
part of the FSL is used as the Stack area. This space is
assigned in the opposite direction - beginning at the top of
the String Area and working down towards Level Il

The stack area shown is a dynamic (changable) table. Itis
used by the Level 11 and DOS systems as a temporary
storage area for subroutine return addresses and the
hardware registers. Any CALL or RST instruction will
unconditionally cause the address of the following instruc-
tion to be saved (PUSH'd) onto the stack, and the stack
pointer is automatically decremented to the next lower
sequential address. Execution of a RET instruction (used
when exiting from a subroutine) removes two bytes from
the stack (the equivalent of a POP instruction) and
reduces the stack pointer by two.

Storage space in the stack area can be allocated by a
program, but it requires carefull planning. Some BASIC
subroutines such as the FOR-NEXT routine, save all
values related to their operation on the stack. Inthe FOR-
NEXT case an eighteen byte block (called a frame) is
PUSH'd onto the stack and left there until the FOR-
NEXT loop is completed.

Before space is assigned in either part of the FSL (except
for Stack instructions such as CALL or PUSH) a test is
made (via a ROM call) to insure there is enough room. If
there is insufficient space an Out of Memory error is given
(OM). See chapter 2 (page 31) for a description of the
ROM calls used to return the amount of space available in
the FSL

The last area shown in the memory profile is the string

7

area. This 1s a lixed length table that starts at the end of
memory and works toward low memory. The size of this
area may be specified by the CLEAR command. Its
default size s S0 bytes. String variables are stored in this
area. r ngs made equal to strings, String$ and
quoted « stered in the PST.

Earlier it was mentioned that there are six general

that form an ing system. Because of the
way Level IT was put together the individual pieces for
some components are scattered around in ROM, instead
of being collected together in a single area. Figure 1.4 is an
approximate memory map of addresses in Level II. For
exact addresses and description of these regions see
chapter 4.

Level 11 RoM
Decimal Address
0000 >
Peripheral
Drivers
1800 -->
Math and
Arithaetic
3600 -->
Support
6700 —=>
Momitor ing
7100
BAsic
Taterpr
11000 ==> |-~
vrilit
12000 —->

Figure 1.4: Approximate memory map of Level [1 addresses.

The Communications Region

The Communications Region is a scratch pad memory for
the Level Il ROMs. An example of addresses stored here
are those for the PST and the variables list. Also BASIC
supports variable types that require more space than the
working registers can provide, and as a result certain
arithmetic ~perations require temporary storage in this
region.

Another i use of the C Region is
to provide a link between Level Il and DOS - for passing
addresses, and data, back and forth. The DOS Exit
addresses and Disk BASIC addresses are kept in this
area. As mentioned earlier a Level II system, with disks,
begins execution in the DOS system. Control is passed
from DOS to Level I only after the command BASIC has
been executed (which also updates the Communications
Region by storing the DOS Exits and Disk BASIC
addresses).

Because Level II is in ROM it is impractical to try and
modify it. Yet, changes to an operating system are a
practical necessity that must be considered. In order to
solve this problem the Level I1 system was written with
jumps to an area in RAM, so that future changes could be
incorporated into the ROM system. Those jumps are
called DOS Exits, and on a system without a DOS they
simply return 1o Level Il. When a DOS is present, the

Jump addresses are changed to addresses within Disk
BASIC which allows changes to be made to the way Levei
1I operates.

The Disk BASIC addresses are used by Level Il when a
Disk BASIC command ;.2 2s GET or PUT is en-
2 They are ~ecause the code that
Zwse uperations s act present in Level 11 Itis a

SUppuns
partof Dk BASIC thatis loadeZ into RAM , and since it
could be loaded anywhere Levei Il needs some way of
locating it. The Disk BASIC exits are a group of fixed
addresses, known to both Level IT and Disk BASIC,
which allows Level II to pass control to Disk BASIC for
certain verb action routines.

Another interesting aspect of the Communications
Region is that it contains a section of code called the
Divide Support Routine. This code is called by the
division subroutines, to perform subtraction and test
operations. It is copied from Level II to the RAM
Communications Region during the IPL sequence. When
a DOS is present it is moved from ROM to RAM by the
DOS utility program BASIC.

An assembly language program usingthe Level Il division
routine on a disk system which has not had the BASIC
command executed will not work because the Divide
Support Routine is not in memory. Either execute the
BASIC utility or copy the suppport routine to RAM,
when executing assembly language routines that make
division calls.

Level II Operation

Earlier in this chapter there was a brief description of six
components which are generally found in all operating
systems. Using those components as a guideline, Level 11
can be divided into the following six parts:

Pant | ... [nput or scanner routine.

Part 2 ... Interpretation and execution routine.
Part 3 .. Verb action routines

Part 4 ... Arithmetic and math routines

Part 5 .. 1/O driver routines.

Part 6 .. System function routines.

There is another part common to all systems which is not
included in the above list. This part deals with system
initialization (IPL or Reset processing), and it will be
discussed separately. Continuing with the six parts of
Level I1, we will begin at the point where the system is
ready to accept the first statement or command. This is
called the Input Phase.

Part 1 - Input Phase

The Input Phase is a common part of all operating
systems. Its function is to accept keyboard input and
respond to the commands received. In the case of a Level
IIsystem it serves a dual purpose - both system commands
and BASIC program statements are processed by this
code.

Entry tothe lnput Scan routine 1s at. Thisis an initial entry
point that 1s usu v called once. The message
‘READY 15 a DOS Exit (41AC) is taken
before the 2 d Sy aithout disks

~ateally, a1 end of IPL

i disks, this code s entered by
:ram BASIC at the end of its
or Scanner phase is summarized

1. Get next line of mput from keyboard.

2. Replace reserved words with tokens

3. Test for a system command such as RUN, CLOAD, etc. or a
DIRECT STATEMENT (BASIC statement without a line
number) and branch 10 6 if true

4. Store tokenized statement in program statement table.

<. Return to step |

6. Begin interpretation and execution

The Input Phase loop begins at 1A33. After printing the
prompt >, or a line number ifin the Auto Mode aCALL to
03612 is made to read the next line. Then the line number
is converted from ASCII to binary withaCALLto IESA.
The statement is scanned and reserved words are replaced
by tokens (CALL 1BCO). Immediately after tokenization
aDOS Exit to 41 B2 is taken. Upon return a test for a line
number is made. If none is found a System Command or
Direct Statement is assumed, and control is passed to the
Execution Driver at 1D5SA. On systems without disks this
test is made at 1AA4. On a disk system the test, and
branch, is made at the DOS Exit41B2 called from |AAL.

If aline number is present the incoming line is added to the
PST. the pointers linking each line are updated by the
subroutine at 1AFC to 1BOE. If the line replaces an
existing line, the subroutine at 2BE4 is called to move all
of the following lines down over the line being replaced.

When in the Auto Mode the current line number is kept in
40E2 and 40E3 the increment between lines is stored at
40E4. The code from 1 A3F to 1 A73 prints and maintains
the automatic line number value. Null lines (statements
consisting of a line number only) are discarded. They are
detected by a test at IABF.

Part 2 - Interpretation & Execution

g

and d inaLevel [systemis
by interpretation. This means that a routine dedicated to
the statement type, or command, is called to interpret each
line and perform the necessary operations. This is a
common method for system command execution. With
DOS, for example, seperate modules are loaded for
commands such as FORMAT and COPY. In some
systems, commands which are related may be combined
into a single module, after the module has been loaded it
decides which sub-function to execute by examining
(interpreting) the name which called it.

Program execution by interpretation is not common
except on microcomputers, and even then only for
selected languages such as BASIC and APL. The alter-
native to an interpreter is program compilation and
execution, with the use of a compiler

Tpuers translate source sta
cutable machine language code (called *ect code) The
object code is then loaded into RAM as a seperate step
using a utility program called a Loader. After loading the
object code into RAM. control is passed to it and it
executes almost independently of the operating system.

ments o dirgctiv eve

Not all source code is converted to object code by a
compiler. Some statements such as READ and WRITE
or functions such as SINE or COSINE may be
recognized by the compiler, and rather than generate
code for them, subroutine calls for the specific routines
will be produced.

These routines are in object code form in a library file.
When the loader loads the object code, for the compiled
program, any subroutine calls are satisfied (the sub-
routines are loaded) from the library file. A loader that will
take modules from a library is called a linking loader.

An interpreter operation is much simpler by comparison.
Each source statement is scanned for reserved words such
as FOR, IF, GOTO, etc.. Every reserved word is
replaced by a unique numeric value called a token then the
tokenized source statement is saved. In Level I1 it is saved
in the Program Statement Table. When the program is run
control goes to an execution driver which scans each
statement looking for a token. When one is found control
is given to a routine associated with that token. These
token routines (also called verb action routines) perform
syntax checks such as testing for valid data types, commas
inthe correct piace. and closing parenthesis. In a compiler
entered action routine there is no syntax checking
because that would have been done by the compiler - and
the routine would only be called if Il of the parameters
were correct.

o\ 2

0 o

In Level Il the execution phase is entered when a
statement Without a line number has been accepted, or
when a RUN command 1s given. This may be a system
command or a single BASIC statement that is to be

executed. When a RUN command s recenad :n entire
BASIC program is to be exes The Ereoauondrver
loop starts at 1DSA and ends IDEI T= addresses
are deceptive though, because rort.cas of this code are

shared with other routines.

The steps in this phase are summerized as follows. For
more details see figure 1.5

1. Get the first character from the current line in the PST_ If the
end of the PST has been reached then return to the Input Phase:
2. 1f the character is not a token, go (o step 6. .
3. If the token is greater than BC it must be exactly FA (MIDS),
otherwise a sytnax error is given. o
4. If the token is less than BC, use it as an index into the ver
action table

5. Go 10 action routine and retun to step |)

6. Assignment section. Locate variable name. if it's not defined.
then create it

7. Call expression evaluation.

8. Return o step

Figure 1.5: Flowchart of the execution driver routine.

The Execution driver begins by loading the first character
from the current line in the PST. This character is tested to
see if it is a token (80-FA) if not, the current line is
assumed to be an assignment statement such as:

A=1

The assignment statement routine begins at 1F21. It is
similiar to the other action routines, except that it :s

1Q

ntered directly rather than through a table look up
process. Before it is entered a return address of 1 D1E in
the execution driver is PUSH'd onto the stack, so it can
ex1t as any other action routine.

The assignment routine assumes that the pointer for the
curreatline is immediately to the left of the variabie rame
o be assigned, It locates, or creates an entry for the
variable name, tests for an equals () after the name - and
then CALLS 2337, The routine at this location evaluates
the expression. The result is converted to the correct
mode, and stored at the variable address.

Assuming that a good token was found as the first
character, a second test is made to see if it is valid as the
first token in a line. Valid tokens which can oceur at the
start of a line are 80 - BB. The tokens BC - F9 can only
occur as part of an assignment statement or in a particular
sequence such as 8F (IF) ‘Expression’ CA (then)
XXXX. The MIDS token FA is the only exception to this
rule. There isatest for it at 2AE7 where a direct jump to
its Disk BASIC vector (41D9) is taken. If the token is
between 80 asd BB it is used as an index into a verb action
routine table and the address of the the action routine, for
that token is lecated. Control is then passed to that action

routine whichwill do all syntax checking and perform the
required funcion,

Parameters for the verb routines are the symbols in the
statement follewing the token. Each routine knows what
legitimate characters o expect, and scans the input string
from left to right (starting just after the token) until the end
of the paramelers are reached. The end of the parameters

must coincide with the end of the statement, or a syntax
error is prodiged,

Symbols whi terminate a parameter list vary for each
action routine Left parentheses °) terminate all math and
string funclis. A byte of machine zeros (00) stops
assignment Si@ements, other routines may return to the
execution phme afier verifying the presence of the re-
quired value.

As each verbmutine is completed control is returned to
the Executiondriver, where a test for end of statement
(EOS) or a campound statement (:) is made. The EOS is
one byte of magine zeros. If EOS is detected the next line
from the Progam Statement Table is fetched. and it
becomes the @rrent input line to the Execution driver,

When a SysteaCommand or a Direct Statement has been
executed thergs no pointer to the next statement, because
they would hwe been executed from the Input Phase's
input buffer. Ws is in a different area than the PST where
BASIC progum statements are stored. When the RUN
command is @ecuted, it makes the Execution driver get
its input fromge PST.

When the emtof a BASIC program, or a system com-
mand. is reatid control is unconditionally passed to the
END verb whhwill eventually return tothe Input Phase.
Any errors deected during the Execution and Interpre-

tion phase cause control to be returned to the Input Phase
after printing an appropriate error code. An exception is
the syntax error, which exits directly to the edit mode.

Part 3 - Verb Action

The ver> action routines are where the real work gets
done. There are action routines for all of the system
commands such as CLOAD, SYSTEM, CLEAR,
AUTO as well as the BASIC verbs such as FOR, IF,
THEN, GOTO, etc. In addition there are action routines
for all the math functions and the Editor sub-commands.

Verb action routines continue analyzing the input string
beginning at the point where the Execution phase found
the verb token. Like the Execution phase, they examine
the string in a left to right order looking for special
characters such as (. ,), or commas and tokens unique to
the verb being executed. If arequired character is missing,
or if an illogical condition arises, a syntax error is
generated.

The verb routines use a number of internal subroutines to
assist them while executing program statements. These
internal routines may be thought of as part of the verb
action routines, even though they are used by many other
parts of the Level I system.

A good example of an intemal routine is the expression
evaluation routine, which starts at 2337. Any verb routine
that will allow, and has detected, an expression as one ot
its arguements may CALL this routine. Examples of verb
action routines that allow expressions in their arguements
are IF, FOR, and PRINT. In turn the expression evalua-
tion routine will CALL other internal routines (such as
260D to find the addresses of variables in expressions
being evaluated). Since subscripted variables can have
expressions as their subscript, the find address routine
may in turn CALL back to the expression evaluation
routine!

This type of processing is called recursion, and may be
forced by the following expression

<0 = c(1a/be(2d)/of 1*c0))

Other internal routines used by the verb action routines
are : skip to end of statement 1F05: search Stack for a
FOR frame 1936 and build a literal string pool entry
2865

Any intermediate results, which may need to be carried
forward, are stored Work Register Area | (WRA1) in the
Communications Region. Some verbs such as FOR build
astack frame which can be searched for and recognized by
another verb such as NEXT. All of the action routines
except MIDS are entered with the registers set as shown in
figure 1.6. A full list of verb action routines, and their
entry points is given in chapter 4 (page 43).

string

Figure 1 6. Register settings for verb action routine entry

Part 4 - Arithmetic & Math

Before going into the Arithmetic and Math routines we
should review the arithmetic capabilities of the Z-80 CPU
and the BASIC interpreter.

The Z-80 supports 8 bit and 16 bit integer addition and
subtraction. It does not support multiplication or division,
nor does it support floating point operations. Its register
set consists of seven pairs of 16 bit registers. All arith-
metic operations must take place between these registers
Memory to register operations are not permitted. Also
operations between registers are extremely restricted,
especially with 16 bit quantities.

The BASIC interpreter supports all operations e.g.,
addition, subtraction, multiplication, and division for
three types (Modes) of variables which are: integer, single
precision and double precision. This support is provided
by internal subroutines which do the equivalent of a
hardware operation. Because of the complexity of the
software, mixed mode operations, such as integer and
single precision are not supported. Any attempt to mix
variable types will give unpredictable results.

The sizes for the variable types supported by BASIC are
as follows:

Integer 16 bits (15 bits 1 sign bit)

32 buts (8 bit biased exponent
plus 24 bit signed mantissa)

56 bits (8 bit biased exponent
plus 48 bit signed mantissa)

Single Precision

Double Precision

boomthis s clear that the registers are not large enough
to hold two single or double precison values, even if
floating point operations were supported by the hardware.
Because the numbers may be too big for the registers, and
because ol the sub-steps the software must go through an
area of RAM must be used to support these operations

Within the Communications Regior o areas have been
set aside to support these operaticns These areas are
labeied: Working Register Area | (WRA1) and Working
Register Area 2 (WRA2). They oczupy locations 411D
104124 and 4127 10 41 2E respectively. They are used to
hold one or two of the operands, depending on their type,
and the final results for all single and double precision
operations. A description of the Working Register Area
follows

Single Double
Acdress | Integer | Precision | Precision
“ip 158
Al] sy
ae | s
w120 sy
a2l s Lss msp
w22 ws | wss Nnss
a123 us s
426 Exponeat Exponent

nificent byte
gaificent byte
e

WRAZ has a6 identical format.

Figure 1.7: Working Regi:

ter Area layour

lateger

Destination
Register Operation

W mwoe DE
WL wo- DE
KL Multiplication ML * DE
VRAL Division DE / WL
Single Precision
Source
Operatioa Regusters
WRAL Addition VRAL 4 (BCDE)
WRAL Subtraction WRAL - (BCDE)
VRAL Multiplication WRAL % (BCDE)
WRAL Division WAL/ (BCDE)
Double Precision
Destimation Source
Register Operation Registers
WRAL Addition WRAL ¢ WRA2
WAL Subtraction WAL - WRA2
WHAL Multiplication WAL+ WRAZ
WRAL Division L/ wea2

Figure 1.8: Register arrangements usesd by arithmetic routines.

Because mixed mode operations are not supported integer
operations can only take place between integers, the same
being true for single and double precision values. Since
there are four arithemetic operations (, -. *. and /), and
three types of values, there must be taehe arithmetic
routines. Each of these routines knows a & peofvalues
it can operate on, and expects those v alues (o be loaded
into the appropriate hardware or w orking registers before
being called. Figure 1.8 shuws tze register assignments
used by the arithmetic routines. These assignments are
not valid for the Math routines because they operate on a
single value, which is always assumed to be in WRAI.

The math routines have a problem in that they must
perform arithmetic operations, but they do not know the
data type of the argument they were given. To overcome
this another byte in the Communications Region has been
reserved to indicate the data type (M de) of the variable in
WRALL. This location is called the T . pe flag. Its address is
40AF and contains a code indicating the data type of the
current contents of WRAL. Its codes are:

coDE DATA TYPE (MODE)

Iateger
string
Single precision
Double precision

The math routines do not usually require that an argument
be a particular data type, but there are some exceptions
(see chapter 2, page xx, for details).

Part § - I/0 Drivers

Drivers provide the fu
necessary to operate a speclfc device. Level Il ROM
contains Input/Qutput (1/Q) drivers for the keyboard,
video, parallel printer, and the cassette. The disk drivers
are part of the DOS system and consequently will not be
discussed.

All devices supported by Level II, with the exception of
the cassette, require a Device Control Block (DCB). The
drivers use the DCB's to keep track of perishable informa-
tion, such as the cursor position on the video and the line
count on the printer. The DCB’s for the video, keyboard,
and printer are part of the Level II ROM. Since informa-
tion must be stored into them, they are moved from ROM
to fixed addresses in RAM (within the Communications
Region) during IPL.

The Level 11 drivers must be called for each character that
is to be transmitted. The drivers cannot cope with the
concept of records or files, all record blocking and de-
blocking is left to the user. Level I1 has no general purpose
record management utilities. For BASIC programs you
must use routines such as PRINT and INPUT to block off
each record.

When writting to a cassette. for example, the PRINT
routine produces a header ot 256 zeroes, tollowed by an
AS. After the header has been written each individual
variable is written as an ASCII string. with a blank space
between each variable, finally terminating with a carriage
return. Non string variables are coonverted to their ASCII
equivalent.

INPUT operation begins with a search for the 256 byte
header. Then the AS is skipped and all variables are read
into the line buffer until the carriage return is detected.
When the INPUT is completed all variables are con-
verted to their correct form and moved to the VLT.

The keyboard, video and line printer drivers can be
entered directly or through a general purpose driver entry
point at 03C2. Specific calling sequences for each of these
drivers are given in chapter 2

The cassette driver is different from the other drivers in
several respects. It does its I/O in a serial bit mode
whereas all of the other drivers work in a byte (or
character) mode. This means that the cassette driver must
transmit data on a bit-by-bit basis. The transmission of
each bit is quite complex and involves many steps.
Because of the timing involved, cassette I/O in a disk
based system. must be done with the clock off (interrupts
inhibited). For more details on cassette 1/O see chapter 4

Part 6 - System Utilities

System utilities in Level Il ROM are the Direct Com-
mands:

AUTO, CLEAR, CSAVE, CLOAD, CLEAR, CONT,
DELETE, EDIT, LIST, NEW, RUN, SYSTEM,
TROFF and TRON. These commands may be inter-
mixed with BASIC program statements. However, they
are executed immediately rather than being stored in the
program statement table (PST). Afer executing a Direct
Command, control returns to the Input Phase.

After an entire BASIC program has been entered (either
through the keyboard or via CLOAD or LOAD, on adisk
system), it must be executed by using the RUN command.
This command is no different from the other system
commands except that it causes the BASIC program in
the PST to be executed (the Execution Phase is entered).
As with other system commands, when the BASIC
Pprogram terminates, control is returned to the Input
Phase.

System Flow During IPL

The IPL sequence hls zlrudy been discussed in general
terms. A of the p follows.
The description is divided into seperlle sections for disk
and non-disk systems.

Reset Processing (non-disk)

Operations for this state begin at absolute location zero
when the Reset button is pressed. From there control 1s
passed to 0674 where the following takes place.
00UFC

A) Ports FF (255 decimal) to 80 (128 decimal) are
initialized to zero. Th:s clears the cassette and selects 64
characters per line the video.

B) The code from 06 D2 to 0707 is moved to 4000 - 4035
.This initializes addresses for the restart vectors at 8, 10,
18 and 20 (hex) to jump to their normal locations in Level
II. Locations 400C and 400F are initialized to
RETURNS.

If a disk system is being IPL'd $00C and 400F will be
modified to JUMP instructions with appropriate
addresses by SYSO during the disk part of IPL. The
keyboard. video, and line printer DCB's are moved from
ROM to RAM beginning at address’ 4015 to 402C after
moving the DCB's locations 402D, 4030, 4032 and 4033
are initialized for non-disk usage. They will be updated by
SYSO if a disk system is being IPL'd.

C) Memory from 4036 to 4062 is set to machine
zeros.(00)

After memory is zeroed, control is passed to location
0075 where the following takes place:
00UFC

A) The division support routine is moved from
@FT218F7-191B to 4080-40A6 .This range also in-
cludes address pointers for the program statement table.
Location 41 ES is initialized to:

LD A, (2C00)

B) The input buffer address for the scanner routine is set
to41E8 . This will be the buffer area used tostore each line
received during the Input Phase.

C) The Disk BASIC entry vectors 4152-41A5 are
initialized to a JMP to 012D .This will cause an L3
ERROR if any Disk BASIC features are used by the
program. Next, locations 41A6-41E2 (DOS exits) are set
to returns (RETs) 41E8 is set to zeYo and the current
stack pointer (CSP) is set to 41 F8 .(We need a stack at
this point because CALL statements will be executed
during the rest of the IPL sequence and they require a
stack to save the return address).

D) A subroutine at 1B8F is called. It resets the stack to
434C and initializes 40E8 to 404A . It then initializes
the literal string pool table as empty, sets the current
output device to the video, flushes the print buffer and
tumns off the cassette. The FOR statement flag is set to
zero, a zero is stored as the first value on the stack and
control is retumed to 00B2

E) The screen is cleared, and the message '"MEMORY
SIZE’ is printed. Following that, the response is accepted

13

and tested, then stored in 40B1 Fiity words of
are alloted for the string area and its lower bo
address is stored in 40A0.

F) Another subroutine at 1B4D is called to turn Trace
off, initialize the starting address of the simple variables
(40F9), and the program statement table (40A4). The
variable type table 411A is set to single precision for all
variables, and a RESTORE is done. Eventually control is
returned to 00FC .

G) At 00FC the message 'RADIO SHACK Level 11
BASIC' is printed and control is passed to the Input
Phase.

Reset Processing (disk systems)

Operations for this state begin at location 0000 and jump
immediately to 0674 . The code described in paragraphs
A, B, and C for RESET processing (non-disk systems on
page xx) is common to both IPL sequences. After the
procedure described in paragraph C has taken place a test
is made to determine if there are disks in the system. If
there are no disk drives attached, control goes to 0075,
otherwise. . .
00UFC

A) Disk drive zero is selected and positioned to track 0
sector 0. From this position the sector loader
(BOOT/SYS) is read into RAM locations 4200 - 4455.
Because the sector loader is written in absolute form it can
be executed as soon as the READ is finished.

After the READ finishes, control is passed to the sector
loader which positions the disk to track 11 sector 4. This
sector is then read into an internal buffer at 4D00. The
sector read contains the directory entry for SYSO in the
first 32 bytes. Using this data the sector loader computes
the track and sector address for SYSO and reads the first
sector of it into 4D00.

B) Following the READ, the binary data is unpacked and
moved to its specified address in RAM. Note that SYS0 is
not written in absolute format so it cannot be read directly
into memory and executed. It must be decoded and moved
by the sector loader. Once this is done control is passed to
SYSO beginning

at address 4200.

C) The following description for SYSO applies to
NEWDOS systems only. It begins by determining the
amount of RAM memory and storing its own keyboard
driver address in the keyboard DCB at 4015. The clock
interrupt vector address (40)2) is initialized to a CALL
4518. Next, more addresses are initialized and the
NEWDOS header message is written.

D) After writing the header, a test for a carriage return on
the keyboard is made. If one is found, the test for an
AUTO procedure is skipped and control passes immedi-
ately to 4400 were the DOS Input SCANNER phase is
initiated.

14

nuie

Assuming a carriage return was not detected th
Allocation Table (GAT) sector (track 11 sector) is read
and the EO byte is tested for a carriage return vaiue.
Again, if one is found (the default case) control goes to
4400, otherwise a 20 byte message starting at byte EO of
the GAT sector is printed. Then control is passed to 4405
where the AUTO procedure is started. Following execu-
tion of the AUTO procedure control will be passed to the
DOS Input Phase which starts at 4400.

Disk BASIC

One of the DOS commands is a utility program called
BASIC. In addition to providing a means of transfering
control from DOS to Level I1, it contains the interpreta-
tion and execution code for the following Disk BASIC
statements:

TRSDOS and NEWDOS

et s o MKLS MKSS MKDS DEFFN DEFUSR
TIMES CLOSE FIELD GET PUT As

KILL MERGE NAME ISET RSET INSTR LINE &K
50 COS" CMO"T" CHI'R" CHD"D™ CMD™A™ USRO-USRY
MIDS (left side of equation) OPEN"R" OPEN"O" OPEN"I"
NEWDOS ouly

OPENVE" RENUM REF OD"E" CMD"DOS command™

Au additional command peculisr to TRSDOS only is:
CHD"X", CENTER> - Version 2.1
CHO"#", <ENTER> = Version 2.2 & 2.3

These hidden, and undocumented commands display a
‘secret’ copyright notice by Microsoft. Also undocu-
mented is CMD'A’ which performs the same function as
CMD'S".

Disk BASIC runs as an extension to Level II. After being
loaded, it initializes the following section of the Com-
munications Region:

00UFC

1. DOS exits at 41A6 - 41E2 are changed from
RETURN’s to jumps to locations within the Disk BASIC
utility.

2. The Disk BASIC exits at 4152 - 41A3 are changed
from JP 12D L3 syntax error jumps to addresses of verb
action routines within Disk BASIC.

Following the initiali of the C icati
Region, DCBs and sector buffers for three disk files are
allocated at the end of Disk BASIC’s code. Control is then
given to the Input Scanner in Level II (1A19).

Disk BASIC will be re-entered to execute any Disk
BASIC statement, or whenever a DOS Exit is taken from
Level II. The Disk BASIC entry points are entered as
though they are verb action routines. When finished
control returns to the execution driver.

Note: Disk BASIC occupies locations 5200 - SBAD
(NEWDOS system). Each file reserved will require an
additional (32 256 decimal) bytes of storage. Assembly
programs should take care not to disturb this region when
running in conjunction with a BASIC program.

Chapter 2

Subroutines

Level II has many useful subroutines which can be used
by assembly language programs. This chapter describes a
good number of the entry points to these subroutines.
However there are many more routines than those
described here. Using the addresses provided as a guide,
all of the Level II routines dealing with a particular
function may be easily located.

Before using the math or arithmetic calls study the
working register concept and the mode flag (see chapter 1
page 14). Also, remember that the Division Support
Routine (see chapter 1 page 10) is loaded ically

of memory mapped devices are the video, the keyboard,
and the disk. Programmed 1/O (via ports) is a direct
transfer of data between a register and a device. The only
device using port I/O is the cassette.

Keyboard Input

The keyboard is memory mapped into addresses 3800 -
3BFF. It is mapped as follows:

only when IPL’ing a non-disk system. On disk systems it
is loaded by the Disk BASIC utility. If you are using a disk
system and executing an assembly language program,
which uses the any of the math or arithmetic routines that
require division, you must enter BASIC first or load the
Division Support Routine from within your program.

The I/0 calling sequences described are for Level Il only.
The TRSDOS and Disk BASIC Reference Manual
contains the DOS calling sequences for disk 1/0.

Keyboard Addresse

3801 | 3802 | 3804 | 3808 | 3810 | 3820 | 3840 | 3880

0 @ H ? X 0 8 |ewter |surFr

1 A 1 Q Y 1 9 [cear

The SYSTEM calls and BASIC functions are
specialized, consequently they may not always be useful
for an application written entirely in assembly language.
However if you want to combine assembly and BASIC
you will find these routines very useful.

I/0 Calling Sequences

Input and Output (1/0) operations on a Model I machine
are straight forward, being either memory mapped or port
addressable. There are no DMA (direct memory access)
commands and interrupt processing is not used for /O
operations.

The selection of entry points presented here is not
exhaustive. It covers the more general ones and will point
the reader in the right direction to find more specialized
entry points, if needed.

In memory mapped operations, storing or fetching a byte
from a memory location, causes the data to be transfered
between the CPU register and the target device. Examples

2 5 2 BREAK
c X s 3 o fup arv
) L T 4 R LR
5 3 "] 5 - fir anl
6 F § v 6 . |rT asw
7 c o v 7 1 |se sar

When a key is depressed, a bit in the corresponding
position in the appropriate byte, is set, also bits set by a
previous key are cleared. You will notice that only eight
bytes (3801 - 3880) are shown in the table as having any
signifigance. This might lead one to believe that the bytes
in between could be used. Unfortunately this is not the
case as the byte for any active row is repeated in all of the
unused bytes. Thus all bytes are used.

CALL 002B Scan Keyboard
Performs an scan of the keyboard. If no key
is depressed control is returned to the caller with the A-
register and status register set to zero. If any key (except
the BREAK key) is active the ASCII value for that
character is returned in the A-register. If the BREAK key
is active, a RST 28 with a system request code of 01 is
executed. The RST instruction results in a JUMP to the

15

DOS Exit 400C. On non-disk sy siems the Exit retwins,
on disk systems control is passed to SYSO where the
request code will be inspected and ignored, because
system request codes must have bit 8 on. After inspection
of the code, control is returned to the caller of 002B.
Characters detected at 002B are not displayed. Uses DE,
status, and A register

i SCAN KEYBOARD AND TEST FOR BREAK OR ASTERISK

PUSH DE 3 SAVE DE
1w 3 SAVE 1Y
. i TEST FOR ANY KEY ACTIVE
A i KEY ACTIVE, WAS IT A BREAK
N, NO 3 CO IF NO KEY MIT
Z,BRK 3 LERO IF BREAK KEY ACTIVE
A i €A> BACK TO ORIGINAL VALUE
M i MO, TEST FOR * KEY ACTIVE
.87 i IERO IF *

CALL 0049 Wait For Keyboard Input

Returns as soon as any key on keyboard is pressed.
ASCII value for character entered is returned in A-
register. Uses A, status, and DE registers.

i VAIT FOR NEXT CHAR PRGN KEYBOARD AND TEST FOR ALPHA

PUSH bE i SAVE DE

PUSH n i AND IV

CaLL % 3 WAIT TILL NEXT CMAR. ENTERED

cr e » TEST FOR LOWER TMAN “A™

LY NC,ALPHA i JMP IF HIGHER TMAN NUMERIC
CALL 05D9 Wait For Next Line

Accepts keyboard input and stores each character in a
buffer supplied by caller. Input continues until either a
carriage return or a BREAK is typed, or until the buffer is
full. All edit control codes are recognized, e.g TAB,
BACKSPACE, etc. The calling sequence is:

On exit the registers contain:

GET MEXT LINE FROM KEYBGARD.
LINE CANNOT EXCEED 25 CHARACT

XIT LF BREAK STRUCK.
s

SIZE IQ\I 25 i MAX LINE SIZE ALLOVED
HL,BUFF i BUFFER ADDRESS
I.D 8,S12E i BUFFER SIZE
CALL 5D9M i READ NEXT LINE uun KEYSUARD
R C,BREAK i INP IF BREAK TYPI

BUFF DEFS SIZE i LINE BUFFER

HL Buffer address

B Number of characters transmitted excluding last.
C Orginal buffer size

A Lastcharacter received if a carriage return or BREAK
is typed.

Carry Set if break key was terminator, reset otherwise.

If the bufTer is full, the A register will contain the buffer
size.

16

Video Output

Video 1/0 is another example of memory mapped 1/0. It
uses addresses 3C00 thru 3FFF where 3C00 represents
the upper left hand corner of the video screen and 3FFF]
represents the lower right hand corner of the screen.

Screen control codes such as TAB, CURSON ON/OFF,
BACKSPACE and such are processed by the video
driver routine. The video device itself does not recognize
any control codes. Codes recognized by the driver and
their respective actions are:

Code (hex.) Action
08 backspace and erase character.
OE turm on cursor.
OF turn off cursor.
17 select line size of 32 char/line.
18 backspace one character (left arrow)
19 skip forward one character |n;m lno\v)
1A skip down one line (down arro
1B skip up one line (up arrow)
1C home cursor. select 64 char/line.
ID POSILION Cursor to start of current line
1E erase from cursor to end of line
IF erase from cursor to end of frame

Character and line size (32/64 characters per line) is
selected by addressing the video controller on port FF,
and sending it a function byte specifying character size.
The format of that byte is:

76543210 =

XX xxxxxx

— operations

character size select
1 = 32 char/line
0 = 64 char/line

CALL 0033 Video Display
Displays the character in the A-register on the video.
Control codes are permitted. Allregisters are used.

i DISPLAY MESSAGE ON VIDEO

Lo ML, LIST i MESSAGE ADDRESS
wor Lo A,(HL) i GET NEXT CMARACTER
or A o TEST FOR END OF MESSAGE

IR 2,00ME i JMP IF END OF MESSAGE (DONE)
PUSH WL NT END, PRESERVE ML
CALL 33 AND PRINT CHARACTER
porP HL © RESTORE HL
e uL i BUMP TO NEXT CHARACTER
i Lor i LOOP TILL ALL PRINTED
DONE .
LIST DERM TMIS IS A TEST®
DEFS 0DM i CARRIAGE RETURNM
DEFB 0 i END OF MESSAGE INDICATOR

CALL 01C9 Clear Screen

Clears the screen, selects 64 characters and homes the
cursor. All registers are used.

CLEAR SCREBN, HOME CURSOR, SEL|
SKIP 4 LINES

CALL O1C9M . CLEAR SCREEN
Lo AT . SELECT 32 CHAR/LINE
CALL 0033H i SEND CHAR SIZE TO VIDEO
LD b4 i NO. OF LINES TO SKIP
L Al . CODE TO SKIP ONE LINE
L00P PUSH BC . SAVE BC
CALL)M i SKIP 1 LINE
PoP BC + GET COUNT

LOOP TILL FOUR LINES DONE

CALL 022C Blink Asterisk

Alternately displays and clears an asterisk in the upper
right hand corner. Uses-ab registers.

i BLINK ASTERISK THREE TIMES
LD NO. OF TIMES TO BLINK

LooP PUSH BC . SAVE COUNT
CALL 022CH o BLINK ASTERISK ONCE
P BC . GET COUNT

DINZ LooP
DONE .

. COUNT 1 BLINK

Printer Output

The printer is another example of a memory mapped
device. Its address is 37E8H. Storing an ASCII character
at that address sends it to the printer. Loading from that
address returns the printer status. The status is retuned as
a zero status if the printer is available and a non-zero
status if the printer is busy

CALLO003B Print Character
The character contained in the C-register is sent to the
printer. A line count is maintained by the driver in the
DCB. When a full page has been printed (66 lines), the
line count is reset and the status register returned to the
caller is set to zero. Control codes recognized by the
printer driver are:

CODE ACTION

00 Returns the printer status in the upper two
bits of the A-register and sets the status as
zero if not busy, and non-zero if busy

0B Unconditionally skips to the top of the next
page.

0C Resets the line count (DCB 4) and compares
its previous value to the lines per page (DCB
3) value. If the line count was zero, no
action is taken If the line count was non-zero
then a skip o the top form 1s performed

0D Line terminator Causes line count ta be
incremented and tested for full page. Usually
causesthe printer 1o begin printing

GRLTE WESSAGE ON PRINTER. (F NOT READY WITWIN 1.5 SECONDS
DISPLAY ERROR MESSAGE ON VIDEO
LT . ADDR OF LINE T0 PRINT
SRT L 8,3 | PREPARE TO I3ST FOR FPRINTER
ReADY
LA L oE,l08 . LOAD DELAY COUNTERS
T QL. 05Dl | GET PRINTER STATUS
m z, 100 I JP IF PRINTER READY
b DE | NOT READY, DECKIMENT
} COUNTERS AND
W AD { TEST IF 1.5 SEC WAS FLAPSED
& & . FIRST DE WUST = 0
m oWt i P 1F 5E ¥ot 0
Nz oA ; LOO TILL 1.5 SEC PASSED
Je NTRDY i GO DISPLAY “PRINTER NOT
wEADY
wr ror W i RESTORE ADDR OF PRINT LINE
LD A, (HL) i GET NEXT CHAR TO PRINT
o A | TEST FOR BXD OF LINE
J 2,008 i JNP IF END OF LINE
oo © PUT CHAR 1N PROPER REGISTER
caLL 580K | PRINT CHARACTER
e ow { BUMP TO NEXT CHAR
m sTART i LOOP TILL ALL CWARS PRINTED
MIRDY LD L, MTROM LML = ADDR OF MOT READY MSG
Ll vibeos . PRINT 456
ooNE . i LINE PRINTED ON FRINTER
LIST DEM “THIS IS A TST
EFR ODH i CR WAY BE REQUIRED To START
PRINTER
) | END OF MSG FLAX
DEMNM “PRINTER NOT READY
kR0 0 . TERMINATE PR
CALL 05D1 Get Printer Status

Returns the status of the line printer in the status register
as zero if the printer is ready, and non-zero if not ready

Other status bits returned are as shown
76543210=0bat

xxxx0000

NOT USED

0 - PRINTER NOT SELECTED
1 - PRINTER SELECTED

0 - NOT READ
L~ READY

0 - PARER

L= 0UT OF PARER
0 - 20T sUSY
1 BUSY

The out of paper snd busy bits are opticnal ou some pristers.

NITOR PRINTER STATUS ACCORDING TO STATUS BITS ASOVE
© PRINT APPROPRIATE ERROR MESSAGE.

Lo BC, 10 . TIMER COUNT FOR PRINTER
START CALL 05DIH . GET PRINTER STATUS

i z,0K
BIT 7,4 Ti8G?
I 2,TE It
BIT 4 1T SELECTED
® .88 0

. WE MAVE HAROWARE PROBLEM
BIT 5, i UNIT IS SELECTED AND NOT BUSY
K z,m . ZERD IF NOT READY

17

TED, READY, ANU SOT BUSY. ASSUME U OF PAPER

P LD WL,OPM . DISPLAY OUT OF PAFER MSG

FETN S i GO WAIT FUR CPERATOR REPLY
i AND KETRY OR ABGRT
i UNIT IS NOT READY, TEST FOR QUT

R NZ,0P . OF PAPER ALSU. JNP IF OUT OF PAPYR
LD HL,NRM i DISPLAY NOT READY MRG
PRV 4 i GO WAIT FOR OPERATOR REPLY
i AND RETRY OR ABOKRT
NS LD HL,NSM i GET DISPLAY NOT SELECTED MSG
JP WAIT i GO WALT FOR OPERATOR REPLY
i AND RETRY OR ABORT
TIME POP BC i GET TIME COUNTER
DEC BC i Cotm 1 Lol
PUSH BC i SAVE NEW VALUE
LD A3 i IF 1TS GONE TO ZERQ
R ¢ i WE HAVE TIMED OUT
JR NZ,START i LOOP TILL OP FINISHED OR TIME-OUT
LD HL,TOM i DISPLAY TIMEOUT MSG
JP wAIT . GET OPERATOR REPLY AND RETRY

i on asoRT
Cassette 1/0

Cassette [/O is not memory mapped. Cassettes are
addressed via port FF after selecting the proper unit, and
1/0 is done abit at atime whereas all other devices do1/O
on a byte basis (except for the RS-232-C)

Because of the bit-by-bit transfer of data, timing is
extremely critical. When any of the following calls are
used, the interrupt system should be disabled to guarantee
that no interruptions will occur and therefore disturb the
critical timing of the output.

CALL 0212 Turn On Motor

Selects unit specified in A-register and starts motor. Units
are numbered from one. All registers are used.

. CODE TO SELECT CASSETTE !

) Al
CALL 0212 i SELECT UNIT 1, TURN ON MOTOR

CALL 0284 Write Leader
Writes a Level 11 leader on currently selected unit. The
leader consists of 256 (decimal) binary zeros followed by
a hex AS. Uses the B and A registers.

Lo Al i CODE TO SELECT UNIT 1
GALL 202 . SELECT UNIT, TURN ON MOTOR
ALL el o WRITE HEADER

18

CALL 0296 Read Leader
Reads the currently selected unit unul an end of leader
(AS) is found. An asterisk is displayed in the upper right
hand corner of the video display when the end is found.
Uses the A-register.

wo oA ; CODE FOR UNLT L
CALL 0212w i SELECT UNIT 1,TURN ON MOTOR

Ll 0296m { READ HEADER. RTN VHEM A5 ENCOUNTERED
CALL 0235 Read One Byte

Reads one byte from the currently selected unit. The byte
read is retumed in the A-register. All other registers are
preserved.

Lo Al i UNIT TO SELECT

CALL 0212M i SELECT UNIT TURN ON MOTOR
CALL 0296H i SKIP OVER KEADER

CALL 0235 i READ FOLLOWING YTE

(34 418 TEST FOR OUR FILE NAME (A)
ooz DK IF FILE A
CALL 0264 Write One Byte

Writes the byte in the A-register to the currently selected
unit. Preserves all register.

Lo i UNIT NO. MASK.

ALL . SELECT UNIT,

CALL i WRITE HEADER (256 ZEROS AND AS)
Lo . WRITE FILE NAME (OURS IS A)
CALL i WRITE A AFTER HEADER

Lttt lﬁ/m

Conversion Routines

These entry points are used for converting binary values
from one data type or mode to another, such as integer to
floating point, and for conversions between ASCII and
binary representation. These conversion routines assume
the value to be converted is in WRA1 and that the mode
flag (40AF) reflects the current data type. The result will
be left in WRA and the mode flag will be updated.

Data Type Conversions

CALL O0A7F Floating Point Integer
The contents of WRAI are converted from single or
double tointeger. No ding is perfc L All
registers are used.

i CONVERT SINGLE PRECISION VALUE TO INTEGER AND MOVE THE RESULT
i TO IVAL

Lo HL,4121H i ADDR OF N WRAL

1 DE,VALUE i ADDR OF LSB OF SP xo.

D 5,4 i NO OF BYTES TO

LDIR i MOVE VALUE TO ml

Lo A i TYPE CODE ¥OR SP

Lp Cioaru) ,a i SET TYPE TO

CALL OA7FH i CONVERT SP VALUE TO INTEGER

Lo A,(51218) i LSB OF INTEGER EQUIVALENT
(1VAL) ,A i SAVE IN INTEGER LOCATION

Lo A,(61220) i MSB GF INTEGER EQUIVALENT

Lo IVAL+1) ,A i SAVE IN INTEGER LOCATION

waLvE pers’ om 1SB OF 502.778 (sp)

DEFB BoH : N
DEFB 00H B
DEFB 88H + EXPONENT
IVAL DEFR o » WILL HOLD INTEGER EQUIVALENT OF
DEFB 0 i SP 502.778
CALL 0ABI1 Integer To Single

The contents of WRA are converted from integer or
double precision to single precision. All registers are used.

i CONVER INTEGER VALUE TO SINGLE PRECISION AND MWOVE T
i LOCAL AREA

1D A5

Lo (41214) ,A i LSB OF INTEGER 26457 (10)

LD A,

b (41228) .4 i MSB OF INTEGER 26457 (10)

1 A2 i TYPE COUE FOR INTEGER

L (40AFH) A i SET TYPE TO INTEGER

CALL OABLH i CONVERR INTEGER T0 S

LD HL, VALUE i ADDR. OF AREA FOR SP EQUIVALENT

MOVE SP VALUE FROM WRAL TO VALUE

VALUE DEFS & i WILL HOLD 26457 IN SP FGRMAT

CALL 0ADB

Contents of WRA are converted from integer or single
precision to double presicion. All registers are used.

Integer To Double

0 A,59H
12 (al218) .4 i LSB OF 26457 (10)
LD L67H
w (41228) A i MSB OF 26457 (10)

2 i TYPE CODE FOR INTEGER
Lo (40AFH) 4 i SET TYPE TO INTEGER
CALL OADBH i CONVER INTEGER TO DP
LD DE,VALUE NOW, MOVE DP VALUE
L HL,411DH FROM WRAL TO LOCAL AREA
o .8 3 TES TO MOVE
[y i

VALUE DEFS 8 i HOLDS DP EQUIVALENT OF 26457

ASCII To Numeric Representation

The following entry points are used to convert between
binary and ASCII. When converting from ASCII to
binary the HL register pair is assumed to contain the
address of the ASCII string. The result will be left in
WRAL or the DE register pair and the mode flag will be
updated accordingly.

CALL 1ESA ASCII To Integer

Converts the ASCII smng pointed to by HL to its mlcgcr
equivalent. The result is left in the DE register p:
Conversion will cease when the first non-numeric
character is found.

Lo HL,AVAL i ML = ADDR. OF ASCII NUMBER
CALL LESAM i CONVERT IT TO BINAR
LD (BVAL) ,DE i SAVE BINARY VALUE

AVAL DERM “26457° 3 ASCLL VALUE m.u
DEFB 0 i NON-NUMERIC 5102

BVAL DEN 2 § HOLDS HIRAKY VALVE zousr

CALL 0E6C ASCII To Binary
Converts the ASCII string pointed to by HL to binary. If
the value is less than 2**16 and does not contain a decimal
point or an E or D descriptor (exponent), the string will be
converted to its integer equivalent. If the string contains a
decimal point or an E, or D descriptor or if iLexceeds
2%*16 it will be converted to single or double precision.
The binary value will be left in WRA1 and the mode fag
will be to the proper value.

19

Lo HL,AVAL

HUMBE
CALL OB6CH . CONVERT ASCIL TO

AVAL DEPM 26457

i ASCLL VALUE T0 8§ CONVERTED
s 0 } NON-NUNERIC STOP BYTE
CALL OE65 ASCII To Double

Converts the ASCII string pointed to by HL to its double
precision equivalent. All registers are used. The result is
left in WRA

LD L, AVAL i ADDR OF ASCIL VALUE TO CONVERT
CALL 0E6SH 4 CONVERT VALUE TO DP
Lo DE,BVAL i THEN MOVE VALUE FKOM
Lo HL,4LLDN i WRAL TO A LOCAL AREA

LD BC,8 i NO. OF BYTES TO MOVE
L i MOVE DP VALUE TO LOCAL AREA

i ASCLL VALUE TO BE CONVERTED
. NONNUMERIC STOP BYTE

LOCAL AREA THAT HOLDS BINARY
EQUIVALENT

Binary To ASCII Representation

The next set of entry points are used to convert from
binary to ASCIL

CALL OFAF HL To ASCII

Converts the value in the HL register pair (assumed to be
an integer) to ASCII and displays it at the current cursor
position on the video. All registers are used

L HL,sensk L L= 25784 (10)
aLL OFAFR | CONVERT To ASCII AND BISPLAY
CALL 132F Integer ToASCII

Converts the integer in WRA1 to ASCII and stores the
ASCII string in the buffer pointed to by the HL register
pair. On entry, both the B and C registers should contain a
S to avoid any commas or decimal points in the ASCII
string. All registers are preserved.

20

o W) aL 4 %0 (1) T0 KRAL
i 5, 5051 | SUPRESS COMMAS OR DEC.
Ty L,8UFF | SUFFER ADDR FOR ASCID
AL e | CONVERT VALUE IN ¥RAL TO A5
. L AND STORE 1IN 8UFF.
BUFF DEFS T , BUFFER FOR ASCLI VALUE
CALL OFBE Floating to ASCII

Converts the single or double precision number in WRA |
to its ASCII equivalent. The ASCII value is stored at the
buffer pointed tc by the HL register pair. As the value is
converted from binary to ASCII, it is formatted as it
would be if a PRINT USING statement had been
invoked. The format modes that can be specified are
selected by loading the following values into the A, B .and
C registers

. Do not edit. Strictly binary to ASCIL.
Where X is interpreted as:

L eoomria sotarion
-

SIGN FOLLOWS VALUE

INCLUDE S1GN
PRINT LEADING § 5IGN

INCLUDE LEADING ASTERISKS
PRINT COMMAS EVERY JRD DIGIT

NOT PERFORM EDIT FUNCTIONS
1T VALUE ACCORDING TO

0-
1

REGISTER B = Tre nusber of ¢igits to the left of the
secizal poist.
REGISTER C = The oumber of ¢igits after the decimal poiat

5 KL, AVALL o ASCIL VALUE TO CONVERT
CALL OE6CH i CONVERT ASCIL TO BINARY
Lo HL,AVALZ i BUFFER ADDR. ¥OR CONVERTED VALUY
L .0 . SIGNAL %0 EDITING
CALL OFBEM . CONVERT 5P VALUE BACK TO ASCLI
AVALL DERM 1103.257 i ORGINAL ASCII VALUE
DEFR 0

i NON-NUMERIC STOP BYTE
i WILL HOLD RECONVERTED VALUE

Arithmetic Routines

These subroutines perform arithmetic operations between
two operands of the same type. They assume that the
operands are loaded into the correct hardware or Working
Register Area, and that the data type or mode is set to the
correct value. Some of these routines may require the
Divide Support Routine (See Chapter 1 for details.)

Integer Routines

The following routines perform arithmetic operations
between integer values in the DE and HL register pairs.
The orginal contents of DE is always preserved and the
result of the operations is always left in the HL register
pair.

CALL 0BD2 Integer Add
Adds the integer value in DE to the integer in HL. The
sum is left in HL and the orginal contents of DE are
preserved. If overflow occurs (sum exceeds 2**15), both
values are converted to single precision and then added.
The result would be left in WRA1 and the mode flag
would be updated.

1 s i TYPE CODE FOR INTEGER

LD (40AFH) ,A i SET TYPE TO INTEGER

LD HL, (VALL) i LOAD FIRST VALUE

LD DE, (VAL2) i LOAD SECOND VALUE

CALL 0mD2H 5 ADD SO THAT HL = HL + DE

1 A, (40AFH) 5 TEST FOR OVERFLOW

3 2 i IF TYPE IS NOT INTEGER

n NZ,... i NZ IF SUM IS SINGLE PRECISION

ELSE SUM IS INTEGER

wu oew 25
VALZ DERN 20

CALL 0BC7 Integer Subtraction
Subtracts the value in DE from the value in HL. The
difference is left in the HL register pair. DE is preserved.
In the event of underflow, both values are converted to
single precision and the subtraction is repeated. The result
isleftin WRA 1 and the mode flag is updated accordingly.

TYPE CODE FOR INTEGER

153 " 5

10 (40AFH) ,A i SET TYPE TO INTEGER
LD HL,(VALI) i VALUE 1

LD DE,(VAL2) 3 VALUE 2

CALL 0BCTH i SUBTRACT DE FROM HL
LD A, (40AFH) i GET MODE FLAG

3 2 i TEST FOR UNDERFLOW
= NZ,... i NZ IF UNDERFLOW

VALL DERW 25
VALZ DERW 20

CALL 0BF2 Integer Multiplication
Multiplies HL by DE. The product s leftin HL and DE is
preserved. If overflow occurs, both values are converted
to single precision and the operation is restarted. The
product would be left in WRAI.

LD A2 i TYPE CODE FOR INTEGER

LD (40AFH) ,A i SET TYPE TO INTEGER

LD HL,(VALL) i LOAD FIRST VALUE

LD DE,(VAL2) i LOAD SECOND VALUE

CALL 0BF2H i HL = ML * DE

LD A, (40AFH) i GET MODE FI

cp 2 i TEST FOR OVERFLOW

® NZ,... i NO IF VALUE HAS OVERFLOWED

VALL DERW 25
VAL2 DER 20

CALL 2490 Integer Division
Divides DE by HL. Both values are converted to single
precision before the division is started. The quotient is left
in WRAI; the mode flag is updated. The orginal contents
of the DE and HL register sets are lost.

Lo DE, (VALL)
LD HL, (VAL2)
CALL 24908

i LOAD VALUE 1
i LOAD VALUE 2
i DIVIDE DE BY HL. QUOTIENT TO WRAL

VALL DERW 50
VALZ DERN 2

CALL 0A39 Integer Comparison
Algebraically compares two integer values in DE and HL.
The contents of DE and HL are left intact. The result of
the comparison is left in the A register and status register
as:

TION
>
< u
- W
T w DE,(VALL) 5 DE AND HL ARE VALUES
LD HL,(VAL2) 3 TO BE COMPARED
CALL 0A39H ; COMPARE DE TO HL
R . 3 Z IF DE = HL
Je ; POSITIVE IF DE < HL

Single Precision Routines

The next set of entry points are used for single precision
operations. These routines expect one argument in the
BC/DE registers and the other argument in WRAI.

21

CALL 0716 Single Precision Add

Add the single precision value in (BC/DE) to the single
precision value in WRA. The sum is left in WRAI

LD i ADDR. OF ONE SP VALUE
caLL i MOVE IT TO WRAL
LD i ADDR. OF 2ND SP VALUE
CALL i LOAD IT INTO BC/DE REGISTER
CALL i ADD VALUE 1 TO VALUVE 2
i SUM IN WRAL
VALL DEFS 4 i HOLDS A SP VALUE
VAL2 DEFS 4 i HOLDS A SP VALUE

CALL 0713 Single Precision Subtract

Subtracts the single precision value in (BC/DE) from the

single precision value in WRA 1. The difference is left in
WRAI1

Lo HL, VAL i ADDR OF ONE SP. VALUE
CALL 9Bl i MOVE LT TO WRAL
LD HL,VAL2 i ADDR OF 2ND SP VALUE
CALL 9C2m i LOAD IT INTO BC/DE
CALL 713 i SUBTRACT DE FROM WRAL

. i DIFFERENCE LEFT IN WRAL

VALl DEFS
VALZ DEFS

e

i HOLDS A SP VALUE
i HOLDS A SP VALUE

CALL 0847 Single Precision Multiply

Multiplies the current value in WRA1 by the value in
(BC/DE). the product is left in WRAI.

LD HL,VALL i ADDR OF ONE SP VALUE
CALL 9Bl i MOVE IT TO WRAL

LD HL,VALZ i ADDR OF 2ND SP VALI

CALL 9C2H i LOAD 2ND VALUE INTO BC/DE

CALL 847 i MULTIPLY
. i PRODUCT LEFT IN WRAL

VALl DEFS : 4 7 HOLDS A SP VALUE
VA2 DEFS 4 § HOLDS A SP VALUE
CALL 2490 Single Precision Divide

Divides the single precision value in (BC/DE) by the
single precision value in WRA 1. The quotient is left in
WRAL.

b WL, VALL i ADDR OF DIVISOR

CALL 9BlH i MOVE IT TO WRAL

Lo ML, VAL2 i ADDR. OF DIVIDEND

CALL 9c2H i LOAD BC/DE WITH DIVIGEND

i DLVIDE BC/DE BY WRAL

CALL 240K
. i QUOTIENT IN WRAL

VALL DEFS 4

i HOLDS DIVISOR
VALZ DEFS 4

HOLDS DIVIDEND

22

CALL 0AOC Single Precision
Comparison

Algebraically compares the single precision value in
(BC/DE) to the single precision value WRA 1. The result
of the comparison is returned in the A and status as:

OPERATION A REGISTER
(BC/DE) > WRAL A=l
(BC/DE) < WRAL A=el
(BC/DE) = WRAL A= 0

Lp i ADDR OF ONE VALUE TO BE COMPARED
cALL i WOVE IT TO WRAL

Iy ; ADDR OF IND VALUE TO COMPARE
caLL i LOAD ZND VALUE INTO BC/DE

caLL i COMPARE BC/DE TO WRAL

n i 2ERO IF (3C/DE) = WRAL

» :

POSITIVE IF (BC/DE) < WRAL

VALL DEFS &
VALZ DEFS &

i HOLDS A SP VALUE
i HOLDS A SP VALUE

Double Precision Routines

The next set of routines perform operations between two
double precision operands. One operand is assumed to be
in WRA1 while the other is assumed to be in WRA2
(4127-412E). The result is always left in WRA1

CALL 0C77 Double Precision Add

Adds the double precision value in WRA2 to the value in
WRAL. Sum is left in WRAL.

b A8 i TYPE CODE FOR DP
Lo (4OAFH) A i SET TYPE TO DP
Lo DE,VALL i ADDR OF 1ST DP VALUE
LD HL, 41 LDH i ADDR OF WRAL
cALL i MOVE LST DP VALUE TO WRAL
LD DE,VAL2 i ADDR OF 2ND DP VALUE
LD L, 41274 . ADDR OF WRA2
CALL 903 i MOVE IND VALUE TO WRAZ
CALL 0C77H i ADD WRAZ TO WKAL. SUM IN WRAL
VALl DEFS 8 i HOLDS A DP VALUE
VAL? DEFS 8 i HOLDS A DP VALUE

CALL 0C70 Double Precision Subtraction

Subtracts the double precision value in WRA2 from the
value in WRAL. The difference is left in WRALI.

LD .8 i TYPE CODE FOR DP
LD (40AFH) ,A ; SET TYPE TO DP
Lp DE, VAL ADDR OF 1ST DP VALUE
LD HL,411D8 ADDR OF WRAL
CALL 9038 MOVE 1ST DP VALUE TO WRAL
L DE, V4 ADDR OF 2ND DP VALUE
L HL, 41274 ADDR OF WRA2
CALL 9038 MOVE 2ND VALUE TO WRA2
CALL ocrom 3 SUBTRACT WRA2 FROM WRAL
. ; DIFFERENCE IN WRAL
VALl DEFS 8 i HOLDS A DP VALUE
VAL2 DEFS 8 i HOLDS A DP VALUE
CALL O0DA1 Double Precision Multiply

Multiplies the double precision value in WRA1 by the
value in WRA2. The product is left in WRAL.

LD 8 ; TYPE CODE FOR DP
1D (40AFH) A i SET TYPE TO DP
L DE,VALL i ADDR OF IST DP VALUE
Lo HL, 41 1DR i ADDR OF WRAL
CALL 9034 3 MOVE IST DP VALUE TO WRAl
1o DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,412M i ADDR OF WRAZ
CALL 9DIH i MOVE 2ND VALUE TO WRA2
CaLL ODALE 3 MULTIPLY WRAL BY WRA2
. i PRODUCT IN WRAL
VALl DEFS 8 ; HOLDS A DP VALUE
VAL2 DEFS 8 ; HOLDS A DP VALUE
CALL ODES Double Precision Divide

Divides the double precision value in WRA | by the value
in WRA2. The quotient is left in WRAI.

Lo A8 i TYPE CODE FOR DP

LD C4OAFH) ,A i SET TYPE TO DP

Lo DE,VALL i ADDR OF 1ST DP VALUE

LD HL, 411D i ADDR OF WRAL

CALL 34 i MOVE 1ST DP VALUE TO WRAL
L DE,VAL2 i ADDR OF 2ND DP VALUE

1D, L, 41278 i ADDR OF

CALL 903§ i MOVE 2ND VALUE TO WRAZ
CALL ODESH i DLVIDE WRAL BY WRA2

i QUOTIENT LEFT IN WRAL

DEFS 8 i HOLDS A DP VALUE
VAL2 DEFS 8 ; HOLDS A DP VALVE
CALL 0A78 Double Precision Compare

Compares the double precision value in WRALI to the
value in WRAZ2. Both register areas are left intact. The
result of the comparison is left in the A and status registers
as:

OPERATION A REGISTER

WRAL > WRA2 A==l

WRAL < WRAZ A=l

WRAL = WRA2 A= 0
LD .8 i TYPE CODE FOR DP
LD (40AFR) ,A i SET TYPE FLAG TO DP
Lo DE,VALL i ADDR OF IST DP VALUE
LD HL,411DH i ADDR OF WRAL
CALL 9D3H i MOVE IST VALUE TO WRAL
LD DE,VAL2 ADDR OF 2ND DP VALUE
LD HL, 41274 ; ADDR Ol
CALL 9D3H i MOVE 2ND VALUE TO WRA2
CALL OA78H i COMPARE WRAL TO WRAZ
IR Z,eee i ZERO IF THEY ARE EQUAL
e LI i POSITIVE IF WRAL < WRAZ

Math Routines

All of the following subroutines assume that location

40AF contains a code indicating the data type or mode of
the variable e.g., integer, single precision, or double
precision, and that the variable itself is in Working
Register Area 1 (WRAI). Also, the floating point
Division Support Routine must be loaded at 4080.

CALL 0977 Absolute Value

ABS (N)

Converts the value in Working Register Area | (WRA1)
to its positive equivalent. The result is left in WRAL. Ifa
negative integer greater than 2**15 is encountered, it is
converted to a single precision value. The data type or
mode flag (40AF) will be updated to reflect any change in
mode.

Lo " TYPE CODE FOR SP
Lp (40AFR) A SET TYPE TO SP
LD HL,VALL ADDR OF SP VALUE TO ABS

CALL 09BLK
CALL 0977H

MOVE SP VALUE TO WRAL
FIND ABS VALUE

VALL DEFB 58K i SP 81.6022(10)

DEFB Jam
DEFB 23K
DEFB 87H
CALL 0B37 Return Integer

INT (N)

Returns the integer portion of a floating point number. If

the value is positive, the integer portion is returned. If the
value is negative with a fractional part, it is rounded up
before truncation. The integer portion is left in WRAI.
The mode flag is updated.

23

r3 A
1 Cioarw) A
Ty HL, VALL
CALL U9BIH
CALL OB3TH
w D, 4L 21K
VALUE
1o HL,VALZ
GALL 09D3M
AREA
VALL DEFB OFOM
050m
EFS OASH
DEFR 0B6M
VA2 DEFS 4
CALL 15BD

J0E FOR 5P
10 SING
ADDR OF SP VALUE
NOVE SP VALVE TO WRAL

ISOLATE INTEGER PART OF SP VALUE

LE PREC.

i ADDR OF WRAL (INTEGER PAKT OF SP

LOCAL ADDR FOR INTEGERIZED VALUE
MOVE INTEGERIZED SP VALVE TO LOCAL

i SP -4l.3418

HOLDS INTEGER PORTION OF
~41.3418

Arctangent
ATN (N)

Returns the angle in radians, for the floating point tangent
value in WRA L. The angle will be left as a single precision

value in WRAL.

1 Al
Iy CGoaFH),
7 HL,TAN
CALL 09BLH
CALL 158DH
o ML, ANGL
) DE,4L21K
CALL 09D3
9AK
ocan
13m
P
4
CALL 1541

TEFE CODE 108 P

SET TYPE TO

ADDR OF m,n FOR TANGENT
RAL

ADDR OF LOCAL STORAGE FOR ANGLE

. ADDK OF WRA

MOVE ANGLE FROM WRAL TO LOCAL AKEA

TANGENT OF 30 DEG.

EXPONENT

WILL HOLD 30 DEG. IN RADS (.5235)

Cosine
COS (N)

Computes the cosine for an angle given in radians. The
angle must be a floating point value: the cosine will be
returned in WRAL as a floating point value

Lo A
Lo (40AFH) A
Lo HL,ANGL
CALL 09BIN
CALL 1561
LD HL,CANGL
Iy DE, 4121
CALL 09D3H
ANGL DEFB 18
UEFE ol
DEFB UM
DEFB B0M
CANGL DEFS &

24

TYPE CODE FOR SP
SET TYPE TO 5P

ADDR OF ANGLE VALUE

MOVE ANGLE T0 WRAL

COMPUTE COSINE

LOCAL ADUR FOR COSINE

ADDK GF WAL

MOVE COSINE FROM WRAL TO LOCAL AREA

30 DEC. IN RADS.

EXECHENT
WILL HOLD COSINE OF 30 DEG.

CALL 1439

Raise Natural Base
EXP (N)

Raises E (natural base) tothe value in WRA | which must
be a single precision value. The result will be returned in
WRAL as a single precision number.

Lo o
Lo CUOAFH) A
Lo HL, EXP
CALL 09B1H
CALL 14398
LD DE, 61 210
LD HL, POV
CALL 09D3M

EXP DEFB ODBM
DEFR 0OFH
DEFB 049H
DEFB 081W

POV DEFS &

CALL 13F2

i TYPE CODE FOR SP

i ADDR OF LOCAL STORAGE
i MOVE POWER TO LOCAL AREA

i se

1.5708(10)

3 HOLDS E*%1.5708

Raise X to the Y Power
Xy

Raises the single precision value which has been saved on
the STACK to the power specified in WRA1. The result
will be returned in WRA1

i COMPUTE 16%%2

Lo BC,RETADD
PUSK BC
L Ab
LD (40AFH) A
Lo HL,X
CALL 09BIM
CALL U9ALH
LD
L 09BLH
Je 13¥28

7Y .

x DERV
DEFW 85

Y DER 0
DEW BIH

‘?! 7+

Siie

72

%‘Qg , /7/'

i ETW ADDR FOLLOVING
i RAISING X TO

. TYPE CODE Tor s

. SET TYPE TO SP FOR X

i ADDR OF VAL TO BE RAISE(
MOVE VAL TO WRAI

i WRA) TO STACK

ADDK OF POWER

MOVE POWER TO WRAL

. WRAL = COMPUTE X**Y

i RTN TO RA WHEN DONE

P FOR 16 (10)

L SP FOR 2 (10)

Y

CALL 0809 Natural Log

LOG (N)

Computes the natural log (base E) of the single precision
value in WRAIL. The result is returned as a single
precision value in WRAIL.

w Al 3 TYPE CODE FOR SP

LD (40A¥H) A i SET TYPE TO SP

Lo HL,POW i ADDR OF POWER

CALL 09BLH 3 MOVE POWER TO WRAL

CALL 0809 3 FIND NAT.LOG. OF POWER

) DE, 41214 ADDR OF WAL

L HL,NLOG ADDR OF LOCAL STORAGE ARI

CALL 09D3¥ MOVE LOG FROM WRAL TO LOCAL ARKA

i FLOATING POINT 3 (1SB)

EXPONENT FOR 3.0
WILL HOLD ur 106 oF 3

CALL 0B26 Floating To Integer
X (N)
L i the part of a floating

point number in WRA1. The result is stored in WRAI
and the type flag is set to integer.

Lo Al i TYPE CODE FOR SP

SET TYPE T0 SP

ADDR OF FLOATING POINT VALUE
MOVE FLT.PT. VALGE TO WRAL
CALL OB26W i TRUNCATE AND CONVERT T0 INTEGER
10 HL, (4121K) LOAD INTEGER PORTION FROM WRAL
Lo (INTG) ML AND STORE IN LOCAL AREA

CBAR 3 SP 39.7107(10)
opld
UiEM
onen
2 i HOLDS INTEGER PORTION OF
; y
CALL 01D3 Reseed Random Seed

RANDOM

Reseeds the random number seed (location 40AB) with
the current contents of the refresh register.

CALL 01D i RESFED KANDOM NUMBER SEFD

CALL 14C9 Random Number

RND (N)

Generates a random number between 0 and 1, or 1 and n
depending on the parameter passed in WRAL. The
random value is returned in WRA | as an integer with the
mode flag set. The parameter passed will determine the
range of the random number returned. A parameter of 0
will return an interger between 0 and 1. A parameter
greater than O will have any fraction portion truncated and

will cause a value between | and the integer portion of the
parameter to be returned.

Lo A2 i TYPE CODE FOR INTEGER

w (mu'l).A i SET TYPE TO INTEGER

"3 A,

LD (unl) A PUT AN INTEGER 50 INTO WRAL

CALL GET A ETWEEN 1 AND 50
o II. (unn) § LOAD RAN . INTO HL

i (RVAL), HL i AND MOVE IT TO LOCAL AREA

BVAL DEW O i HOLDS WANDOM NUMBER (INTEGER)

CALL 1547 Sine
SIN (N)

Returns the sine as a single precision value in WRA L. The
sine must be given in radians in WRAI

L TYPE CODE rﬂl INTEGER
w (40AFH) A SET TYPE T
L HL,ANGL ADDR. OF le IN RADIANS
CALL 038l MOVE ANGLE
CALL 15478 COMPUTE SINE 07 ANGLE
L DE,4L21H ADDR OF SINE IN WRAL
18] HL, SANGL ADDR OF LOCAL AREA FOR SIN
CALL 0903 i MOVE SINE TO LOCAL AREA
ANGL DEFB 188 5 30 DEGS. IN RADS. (.5235)
DEFS 4B
VEFB oM
DEF! SO 3 EXPONENT
SANGL DEFS 4 3 WILL HOLD SINE OF)0 DEG.
CALL 13E7 Square Root
SQR (N)

Computes the square root of any value in WRAL. The

root is left in WRA as a single precision value.
Lo Al § TIPE CODE FoR 5P
LD C40AFH) A i SET TYPE TO §
w HL, VALL i VALUE TO e uuuT ok
CALL 09BLH 3 WUST BE
CALL 13E7H i TAKE ROOT OF e
) D, 4121H i ADDR OF ROUT IN WRAL
L KL, KOOT i ADDR OF LOCAL AKEA

CALL O9D3K MOVE KOOT TO LOCAL AKEA

VALL DEFE OOM SR a

ooH

008

HIK § IXrONENT OF NATING POINT &
KOOT DEFS 4 i HOLDS ROOT 0

25

CALL 15A8 Tangent

TAN (N)
Computes the tangent of an angle in radians. The angle

must be specified as a single precision value in WRAI.
The tangent will be left in WRAL.

LD AL TYPE CODE FOR SP
LD (40AFH) ,A ; SET TYPE TO SP
LD HL,ANGL i ADDR OF ANGLE IN RADIANS

CALL 09BlH
CALL 15A8H

MOVE ANGLE TO WRAl
FIND TAN OF ANGLE

LD DE,4l21H ADDR OF WRAL

LD HL, TANGL ADDR OF LOCAL STORAGE FOR TAN

CALL 09038 i MOVE TAN FROM WRAl 10 LOCAL AREA
ANGL DEFB 184 3 VALUE FOR 30 DEG IN RADS

DEFB 04 3 (.5235)

DEFB 06

DEFB 80H ; EXPONENT
TANGL DEFS 4 3 WILL HOLD TANGENT OF 30 DEG.

Function Derivation

The LEVEL II system supports sixte
those may be called

arithmetic functions. Seves of
th fuactions. They sre the sime, cosime,
square root zponential (base ¢) and natural
e fusctions are computed from the identities:

cos @=s1n0+ ¥

e cos 8
Vi
As implied math fusction exists which computes powers using the
tity:
o

ta

1
LSl
in LEVEL 11 are routimes for the sine
t. The other
aforementioned identities,

exponentisl, natural log
th fuactions derive their values using the

The sine routime is b

4 on five terms of the approzimation:
seo=0- e -HoH

Where @ is in radians. The actusl spproximation used is:
b + 3 - GRY o G o G e G

is & ratio which w!
If x is the angle
e the sign of the r

b M 0% ¢ X ¢ %°
% - X af 90° ¢ X ¢ 180°
b=5 HE e !

% - x af 180%¢ X ¢ 270°
=8 38 yepe
o
- she - Hihe
The cosffic ith the sime series are correct to four decimal

places, the meximum error for sime x is {.000003, thus sll values for
sine & vould be correct to five places.

ltiplied by 2x gives the angle in
» then § is also used to
cording to the following rules:

if 270° ¢ X ¢ 360°

26

L APUNENT AT ION

N
The expodeatiation routine computes e for ail ialues of z

-88 (x

The spproximstion used for this fuaction is derived from the followy
Since e* = 2%1o8s0

Consider 2 U108, oDl
greatest integer fuaction.

Now ef = o t [,lna.' .].,]

here [represents the

Mt = -z 4 Dxlog,eBlaz + 1n2
lae® = 1ot [z Dxlog,el « ‘]

1= -t + |Qxlog,ed + 1} 1n2

Now t = -x | [xlog,e) + 1} 1m2

and so 0Ct<lm2

be
N N A B R

The following series is u

to approximate o t.

et o 1ot +.5td -.166t) +,0416¢4 ~.0083t? +,0013298t¢ -,0001413¢"

Then e* is found by multiplying the approximate value of ¢ © by
€l *1 giving & result that is usually correct to at
ificant digits or five decimel places whichever

least five s
i3 larger,

Bt routine uses the approximation:
REETRE % BT EE YRR Ly

If x <0, the series is compu
rte

absolute value of x the
series is computed using

d as x/2-arcten 1/x. For valuer
i3 computed using the origual value of 1.
The coefficieats used in the computer series are differeat from those
in the spproximating series start ath term, and the
sccuracy oa the fifth and sixth coefficients is marginal as well. The
actusl series used is:

arctan X = X =.33331X* +.199936X* -.142089X" +.106563X*
=.0752896X* +.0429096X*" -.01616157X** +,00286623X""

The mazimum error using this spproximstion is .026.

The natural log rostine is based on three terms from the series:

lase2 [(:').} (;,;%)'. 3 (:_3)']

This series 1n convergent for values of 1(l 30 x must be redefined as

Where o is

/2 43 1

scaling factor and

h algebra, nmot showa here, the : term cam be I

L sivis
in2
X X X\
o= orhr | (A8)) 4 0)
12 [[

Siace lax = 1a X 2% = 1a X + o 1a2 and since

1n2

from the series it follows that

12

lsx (“_1':: -8 ..)..z

Is this fuaction la2 has bee

approximated as 707092 and

lalla2) ws -.5
12
is reasonable where O<x them ln x should be accurate to four

ificant digits. If x is extremely close to zero or very large,
will mot be the cese.

SYSTEM FUNCTIONS

System Functions are ROM entry points that can be
entered at This means that on a disk based system, for
example, an assembly language program which CALLS
these entry points could be executed immediately after
IPL before executing the BASIC utility program first.
These entry points are different from the BASIC
Functions because they do not require the Communica--
tions Region (CR) to be initialized in order to operate
correctly. A Level II system without disks always has an
initialized CR because of its [PL processing.

Some of the routines mentioned here do use the
Communications Region , but none of them require any
particular locations to be initialized. The System Error
routine however, which may be called in the event of an
error detected by these routines, will assume some words
contain meaningfull data, and will return control to the
BASIC Interpreter Input Phase.

RST 08 Compare Symbol

Compares the symbol in the input string pointed to by HL
register to the value in the location following the RST 08
call. If there is a match, control is returned to address of
the RST 08 instruction 2 with the next symbol in the A-
register and HL incremented by one. If the two characters
do not match, a syntax error message is given and control
returns to the Input Phase.

TEST THE STRING POINTED TO BY HL TO SEE IF IT
CONIAINS THE STRING “A=B=C”,

RST 08 3 TEST FOR A
DEFB 4lH 3 HEX VALUE FOR A
RST 08 3 FOUND A, NOW TEST FOR =
DEFB 3DH 3 HEX VALUE FOR =

BST 08 » FOUND =, NOW TEST FOR B
DEFB 42B 3 HEX VALUE FOR B

RST 08 ; FOUND B, TEST FOR =
DEFB 3DH 3 HEX VALUE FOR =

RST 08 i FOUND =, TEST FOR C
DEFB 43H + HEX VALUE FOR C

. i FOUND STRING A=B=C

RST 10 Examine Next Symbol

Loads the next character from the string pointed to by the
HL register set into the A-register and clears the CARRY
flag if it is alphabetic, or sets it if is alphanumeric. Blanks
and control codes 09 and OB are ignored causing the
following character to be loaded and tested. The HL
register will be incremented before loading any character
therfore on the first call the HL register should contain the
string address minus one. The string must be terminated
by a byte of zeros.

THE CURRENT STRING POINTED TO BY HL 1S ASSUMED

3 TO BE PART OF AN ASSICNMENT STATEMENT CONTALNING

3 AN OPTIONAL SIGN FOLLOWED BY A CONSTANT OR A

i VARIABLE NAME. MAKE THE NECESSARY TESTS TO DETERMINE

IF A CONSTANT OR A VARIABLE IS USED.

RST 08 TEST FOR "=~
DEFB 30H HEX VAUE FOR =
NEXT RST 108 GET SYMBOL FOLLOWING =
JR NC,VAR NC IF VARIABLE NAME
CALL 1ESAH GET VALUE OF CONSTANT
JR SKIP JOIN COMMON CODE
VAR cp 28 NOT NUMERIC, TEST FOR +,-,

OR ALPHA

JR Z,NEXT SKIP + SIGNS

cp 2DH NOT A +, TEST FOR A -
JR Z,NEXT SKIP - SIGNS
CALL 260DH ASSUME IT°S A GOOD ALPHA AND
SEARCH FOR A VARIABLE NAME
(SEE SECTION 2.6 FOR A
DESCRIPTION OF 260D)
SKIP .
RST18 Compare DE:HL

Numerically compares DE and HL. Will not work for
signed integers (except positive ones). Uses the A-register
only. The result of the comparison is returned in the status
register as:

CARRY SET - HL < DE
NO CARRY - HL > DE
NZ - UNEQUAL

z - EQUAL

3 THIS EXAMPLE TESTS THE MAGNITUDE OF THE VALUE
3 FOLLOWING THE = IN THE STRING POINTED TO BY HL
5 TO MAKE SURE IT FALLS BETWEEN 100 AND 500

RST 08 3 TEST FOR =

DC 3pH 3 HEX VALUE FOR =

RST L0H 3 FOUND =, TEST NEXT CHAR

JR NC,ERR ; NC IF NOT NUMERIC

CALL L1ESAH 3 GET BINARY VALUE

LD HL,500 ; UPPER LIMIT VALUE

RST 184 i COMPARE VALUE TO UPPER LIMIT

JR C,ERR 3 CARRY IF VALUE > 500
LD HL,100 ; LOWER LIMIT VALUE

RST 184 3 COMPARE VALUE TO LOWER LIMIT
JR NC,ERR ; NO CARRY LF VALUE < 100
RST 20 Test Data Mode

Returns a combination of STATUS flags and unique
numeric values in the A-register according to the data
mode flag (40AF). This CALL is usually made to
determine the type of the current value in WRAL. It
should be used with caution, however since the mode flag
and WRA can get out of phase particularly if some of the
CALLS described here are used to load WRAL.

IYPE STATUS A-REGISTER
02 (INTEGER) NZ/C/M/E =1
03 (STRING) z/C/P/E 0
04 (SINGLE PREC.) NZ/C/P/0 1
08 (DOUBLE PREC.) NZ/NC/P/E 5

27

TEST DATA TYPE AFTER INTEGER ADDITION TO
DETERMINE IF OVERFLOW OCCURED (RESULT WOULD
BE CONVERTED TO SINGLE PRECISION

1D A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),02; SET TYPE TO INTEGER
LD BC,(VALL) ; FIRST QUANTITY
LD HL,(VAL2) ; SECOND QUANTITY
CALL OB2DH ; DO INTEGER ADDITION
RST 208 ; TEST FOR OVERFLOW
i M,0K i RESULT LS INTEGER
. i RESULT IS NOT INTEGER
. ; TEST FOR OTHER TYPES
oK LD (SUM) ,HL ; SAVE INTEGER RESULT
VALl DERW 125 ; 16 BIT INTEGER VALUE
VAU2 DERW 4235 ; 16 BIT INTEGER VALUE
SUM DERW 0 3 BOLDS 16 BIT VALUE

RST 28 DOS Function CALL

Passes request code in A-register to DOS for processing.
Returns for non-disk system. For disk systems, the A-
register must contain a legitimate DOS function code. If
the code is positive, the CALL is ignored and control
returns to the caller. Note that the DOS routine discards
the return address stored on the stack by the RST
instruction. After processing control will be returned to
the previous address on the stack. The calling sequence is:

B
3 LOAD AND EXECUTE DEBUG

LD A,87H ; DOS CODE FOR LOADING DEBUG
CALL DOS
. RETURK HERE
DOS I.SK 28H MAKE DOS CALL (WILL RET TO CALLER)
RST 30 Load DEBUG

This CALL loads the DEBUG program and transfers
control to it. When DEBUG processing is complete,
control is returned to the orginal caller. For non-disk
systems control is returned immediately.

; IF ILLOGICAL CONDITION ARISES LOAD AND EXECUTE DEBUG.
; TEST FOR LEGITIMATE CONDITIONS

JR Z,0K ; JMP IF CONDITIONS ARE CORRECT

RST 308 ; ELSE LOAD AND EXECUTE DEBUG
oK . 3 CONTINUE
RST38 Interrupt Entry Point

This is the system entry point for all interrupts. It contains
a jump to section of code in the Communications Region
designed to field interrupts. That section of code consists
of a DI (disables further interrupts) followed by a RET
(returns to the point of interrupt) for non-disk systems, ora

28

jump to an interrupt processor in SYSO if it is a DOS
system. For DOS systems the interrupt handler consists
of a task scheduler, where the exact cause of the interrupt
is determined (usually a clock interrupt) and the next task
from the task control block is executed. After task
completion, control returns to the point of interrupt.

; INTERCEPT ALL CLOCK INTERRUPTS AND TEST THE WIDGET
5 ON PORT AB. IF THE READY LINE (BIT 8) IS TRUE

; (HIGH OR A 1) TURN ON THE COFFEE POT ON PORT DE.

; THEN JUMP TO THE NORMAL DOS INTERRUPT HANDLER

ORG 4012 REPLACE THE JUMP

P HERE ; TO THE DOS INTERRUPT
i PROCESSOR WITH A JUMP
; TO OUR WN.

0RG OF0OOH ; OUR INTERRUPT HANDLER

HERE DI ; DISABLE FURTHER
INTERRU PTS

PUSH AF i WE'LL NEED AF REGS

IN A,{(0ABH) ; GET WIDGET STATUS

on A ; SET STATUS FOR BIT 8

JP M,TOCP ; WIDGET ON LF NINUS

POP AP i WIDGET OFF, RST REGS

Je 45184 ; GO TO DOS INTERRUPT
; HANDLER

TOCP LD A,21H ; CODE TO TURN ON COFFEE

POT

wT (ODEM),A ; SEND COMMAND TO POT

POP AF i THEN RST REGS

Je 45188 ; AND GO TO DOS INTERRUPT
i HANDLER

CALL 09B4 Move SP Value In

BC/DC Into WRALI

Moves the single precision value in BC/DE into WRAL.
HL is destroyed BC/DE is left intact. Note - the mode flag
is not updated !

" sc,(parT1)

LD 3 GET FIRST ARGUMENT
LD DE,(PART2)

REMAINDER OF ARCUMENT

NOTE - WE HAVE ASSUMED THAT
WRAl CURRENTLY CONTAINS A
SINGLE PRECISION VALUE 11!
MOVE PART] TO WRAl

CALL 09348

LD BC,(PART3) » GET VALUE TO BE ADDED
LD DE,(PART4) ; REST OF VALDE
CALL 07168 ; MOVE RESULT (SUM) TO WRAl

PART2 DEFW 00008
PART1 DEFW 81408
PARTA4 DEMW 00008
PART} DEFW 00001

; LSB OF SP 1.5

; EXPONENT AND MSB OF SP 1.5
3 LSB OF SP XX

i EXPONENT/MSB OF SP XX

CALL 09B1 Moves A SP Value Pointed
To By HL To WRALI

Loads a single precision value pointed to by HL into
BC/DE and then moves it to WRAL. Destroys
HL/BC/DE.

LD HL,VAL 3 GET ADDR OF VALUE TO MOVE
CALL 093818 ; MOVE VALUE TO WRAL

VAL DER 81408 3 SINGLE PREC 1.5
DEN 00008 ; REMAINDER OF 1.5

CALL 09C2 Load A SP Value Into

BC/DE

Loads a single precision value pointed to by HL into
BC/DE. Uses all registers.

; COMPUTE THE PRODUCT OF TWO SP NUMBERS AND MOVE THE
; PRODUCT TO BC/DE.

; ADDR OF VALUE 1

LD BL,VALl ;
CALL 09B1R ; MOVE IT TO WRAl
1o HL,VAL2 ; ADDR OF VALUE 2
CALL 09CZB 3 LOAD IT INTO BC/DE
LD 3C,(41218) ; LOAD EXPONENT/MSB
LD DE,(4123H) ; LOAD LSB

VALL IXXX
DEW IXXX

VALZ DEW XXXX
DEMW IXXX

CALL 09BF Loads A SP Value From

WRALI Into BC/DE

Loads a single precision value from WRA into BC/DE.
Note, the mode flag is not tested by the move routine. It is
up to the caller to insure that WRA1 actually contains a
single precision value,

CALL 09c2n

Lo HL, VALL i ADDR OF VALUE TO MOVE TO WRAl
CALL 09B1H i MOVE VALl TO WRAl
LD HL,VALZ i ADDR OF VALUE TO BE ADDED

LOAD VALUE TO BE ADDED TO BC/DE

CALL 07168
CALL O9RFH

DO SINGLE PRECISION ADD
LOAD RESULT INTO BC/DE

DEFW 83208

LD (sumt) ,DE SAVE LSB

LD (so2) ,BC SAVE EXPONENT/MSB
sumi DEFW 0 ; HOLDS LSB OF SINGLE PRECSION
sne DEFW 0 ; HOLDS EXPONENT/MSB
VALL DEFW 00008 i LSB OF S.P 2.0

DEFW B200H ; EXPONENT/MSB OF 5.P 2.0
VALZ DEFW 00000; ; LSB OF 5.P. 5.0

EXPONENT/MSB OF S.P. 5.0

CALL 09A4 Move WRAI To

Stack

Moves the single precision value in WRA1 to the stack.It
is stored in LSB/MSB/E xponent order. All registers are
feft-intact. Note, the mode flag is not tested by the move
routine, it is simply assumed that WRA1 contains a single
precision value.

ADD TWO SINGLE PRECISION VALUES TOGETHER AND SAVE
THE SUM ON THE STACK. CALL A SUBROUTINE WHICH

WILL LOAD THE VALUE FROM THE STACK, PERFORM IT”S OWN
OPERATION AND RETURN.

LD HL,VALL + ADDR OF VALUE TO MOVE TO WRAL
CALL 09B1H MOVE VALl TO WRAl
LD HL,VAL2 ADDR OF VALUE TO BE ADDED

DO SINCLE PRECISION ADD
SAVE SUM ON STACK

CALL NSUB i CALL NEXT SUBROUTINE
. i RETURN WITH NEW VALUE IN
. 3 IN WRAL,
NSUB POP HL 5 GET RETURN ADDR
LD (RET) ,BL 5 MOVE IT TO A SAFE PLACE
LD HL,VAL3 ; ADDR OF QUANTITY TO ADD

MOVE VAL3 TO WRAL

POP B EXPONENT /MSB

POP DE LSB

CALL 07168 TO VALUE PASSED

LD HL, (RET) RETURN ADDR

JP (BL) RET TO CALLER
VALL DEFW 0000H OF §.P 2.0

DEFW 82008 ; EXPONENT/MSB OF S.P 2.0
VAL2 DEFW 00000; 3 LSB OF §.P. 5.0

DEFW 83208 ; EXPONENT/MSB OF S.P. 5.0
VALl DEFW 0AA6CH 3 LSB OF S.P, -,333333

B

EXPONENT/MSB OF S.P. -.33333

CALL 09D7 General Purpose Move
Moves contents of B-register bytes from the address in

DE to the address given in HL. Uses all registers except
C.

3 BLANK FILL A DCB THEN MOVE A NAME INTO IT

LD A,20H ; HEX VALUE FOR BLANK
LD B,32 ; NO. OF BYTES TO BLANK
LD DE,IDCB ; DE = ADDR OF DCB

L00P LD (DE),A ; STORE A BLANK INTO DCB

INC DE ; BUMP STORE ADDR
DJNZ LOOP ; LOOP TILL DCB BLANKED
LD DE,NAME ; NOW, MOVE FILE NAME TO IDCB
LD HL,IDCB ; DE = NAME ADDR, HL = DCB ADDR
LD B,LNG i NO. OF CHARS IN NAME TO MOVE
CALL 09D7H i MOVE NAME TO DCB

IDCB DEFS 32 ; EMPTY DCB

LNG EQU ENDX-$ LET ASSEMBLER COMPUTE LNG OF

3 FILE NAME
NAME DEFM “FILE1/TXT” ; NAME TO BE MOVED TO DCB
ENDX EQU 3 SIGNAL END OF NAME

CALL 0982 Variable Move Routine

Moves the number of bytes specified in the type flag
(40AF) from the address in DE to the address in HL,
uses registers A, DE, HL.

+ LOCATE THE ADDRESS OF A DOUBLE PRECISION VARIABLE
3 THEN MOVE IT TO A LOCAL STORAGE AREA.

LD HL,NAME1 NAME OF VARIABLE TO LOCATE

CALL 260DH 3 GET ADDR OF STRING X
RST 208 3 MAKE SURE IT°S DBL PREC,
JR NC,0K 3 JMP 1F DBL PREC.
JP ERR + ELSE ERROR
0K LD HL, LOCAL 3 HL = LOCAL ADDR
3 DE = VARIABLE ADDR
CALL 0982H 3 MOVE VALUE FROM VLT TO LOCAL
AREA.
ERR

NAMEL DEPM X"
DEFB 0
LOCAL DEFS B

i NAME OF VARIABLE TO LOCATE
3 MUST TERM WITH A ZERO
; ENOUGH ROOM FOR DBL PREC, VALUE

29

LOAD VALUE TO BE ADDED ITO BC/DE

CALL 29C8 String Move

On entry HL points to the string control block

for the string to be moved, and DE contains the
destination address. All registers are used. The string
length and address are not moved. String control blocks
have the format:

DEFB X STRING LENGTH
DEFW ADDR STRING ADDRESS

+ LOCATE THE ADDRESS OF A STRING VARIABLE CALLED F$.
3 MOVE THE STRING F$ TO A LOCAL STORAGE AREA CALLED

DCB.

H
LD HL,NAME 3 NAME OF VARIABLE TO LOCATE
CALL 260DH ; FIND ADDR OF SSTRING F$
RST 204 ; MAKE SURE IT”S A STRING
JR Z,0K i JMP IF STRING
JP ERR i ELSE ERROR

oK LD A,(DE) 3 GET LENGTH OF STRING
crF 33 ; WHICH MUST BE < 133
JP P,ERR ; ERR, STRING LNG > 32
PUSH DE 3 SHORTCUT FOR MOVING DE TO HL
POP HL i ADDR OF STRING TO HL
LD DE,LOCAL 3 DE = LOCAL ADDR
CALL 29C8H ; MOVE STRING VARIABLE TO

3 LOCAL AREA
ERR

NAME DEPM “F$” NAME OF VARIABLE TO FIND
DEFB 0 ; REQUIRED TO TERM NAME
LOCAL DEFS 32 3 LOCAL STOBAGE AREA

Basic Functions

Basic Functions differ from System Functions because
they deal mainly with tables in the Communications
Region (CR). Because of this, these entry points assume
that the CR has been initialized and properly maintained.
This means that the BASIC Interpreter must have been
entered prior to calling any of these routines, and the
BASIC utility in RAM must be intact. The assembly
program making the CALL must be running as a
subroutine called by a BASIC program.

For a complete description of the tables and storage areas
in the Communication Region see chapter 4.

CALL 1B2C Search For Line

Number
Searches the Program Statement Table (PST) for a
BASIC statement with the line number specified in the
DE register pair. All registers are used. The exit condi-
tions are:

STATUS CONDITION REGISTERS

c/z LINE FOUND, BC = STARTING ADDRESS OF LINE IN PST.

HL = ADDRESS OF FOLLOWING LINE IN PST.
NC/Z LINE DOES NOT EXIST. LINE NUMBER TOO LARGE
HL/BC = ADDRESS OF NEXT AVAILABLE LOCATION IN

NC/NZ LINE DOES NOT EXIST. BC = ADDRESS OF FIRST

LINE NUMBER GREATER THAN THE ONE SPECIFIED.
HL = ADDRESS OF FOLLOWING LINE.

30

LOCATE THE ADDRESS OF BASIC STATEMENT NUMBER 750
IN THE PST, IF THE LINE DOES NOT EXIST RETURN A
STATUS OF -1 IF IT IS LARGER THAN ANY CURRENT LINE
NUMBER, OR A -2 IF IT THERE ARE LINES GREATER THAN
750. IF THE LINE 1S FOUND RETURN A STATUS OF ZERO.

LD DE, 750 ; LINE NUMBER TO SEARCH FOR
CALL 1B2CH 3 SEEK LINE IN PST
JR NC,NO 3 NC SET IF LINE NOT THERE
LD HL,3 ; INCREMENT TQO STEP OVER
ADD HL,BC ; POINTER TO NEXT LINE/LINE NO.
3 RST BELOW WILL INCREMENT
; BEFORE LOADING
RST 108 ; FETCH FIRST CHAR OF OF
STATEMENT.
LD A0 3 SIGNAL LINE FOUND
RET ; RETURN TO CALLER
NO JR NC,M2 ; JMP IF LINE NO. TOO BIG
LD A,OFFR 3 SIGNAL LINE NOT THERE
RET ; RETURN TO CALLER
n2 LD A,OFEH ; SIGNAL LINE NOT THERE
; TO0 BIG
RET ; RETURN TO CALLER
CALL 260D Find Address Of
Variable

This entry point searches the Variable List Table (VLT)
for a variable name which matches the name in the string
pointed to by HL. If the variable exists, its address is
returned in DE. If it is not defined, then it is created with
an initial value of zero and its address is returned in DE.
Dimensioned and non-dimensioned variables may be
located, and suffixs for data mode may be included in the
name string. A byte of machine zeros must terminate the
name string. All registers are used.

3
3 LOCATE THE ADDRESS OF THE VARIABLE A3

LD HL, STRNG 7 NAME OF VARIABLE TO LOCATE

CALL 260DH ; FIND IT°S ADDRESS IN VLT
LD (ADDR),DE ; SAVE FOR FUTURE REFERENCE
STANG DEM ‘A3 ; VARIABLE NAME IS A3
DEFB 0
STRMG DEMM “A(25)° ; VARIABLE NAME IS A(25)
DEFB 0
STRNG DEFM “AL” i VARIABLE NAME IS AX
DEFB 0
“,
\\.
®
20 14 I”';R s D
vy, w8 ¢/ B
”41;-,.7 A R
L -
160 X5 < ”"-‘,,) szu .uA
R o x
[
\;\.xs“"‘ ol '- b g to,
N AT \
A O DINZ 0096H ‘\\
LD B15H
LD {HL).OCOH

CALL 1EBI GOSUB

Can be used to execute the equivalent of a GOSUB"*
statement from an assembly program. It allows a BASIC
subroutine to be called from an assembly subroutine.

After the BASIC subroutine executes, control returns to
the next statement in the assembly program. All registers
are used. On entry, the HL must contain an ASCII string
with the starting line number of the subroutine.

H
; SIMULATE A GO UB STATEMENT FROM AN ASSEMBLY LANGUAGE PROGRAM

LD HL, STRNG ; ADDRESS OF BASIC LINE NUMBER TO GOSUB TO

CALL 1EBLH » EQULVALENT OF A GOSUB 1020

WILL RETURN HERE WHEN BASIC PROGRAM
3 EXECUTES A RETURN

ANG DEMM “1020° 3 LINE NO., OF BASIC SUBROUTINE
DEFB 0

CALL 1DF7 TRON
Turns TRON feature on. Causes line numbers for each
BASIC statement executed to be displayed. Uses A-
register.

i
i TURN TRACE ON THEN EXECUTE A BASIC SUBROUTINE

CALL 1DF7H 3 TURN TRACE ON
LD HL,LN 3 LINE NO. TO GOSUB
3 DO A GOSUB 1500

CALL 1EBIH

LN DERMM 15007 i LINE NO., OF BASIC SUBROUTINE

DEFB 0
CALL 1DF8 TROFF

Disables tracing feature. Uses A register.

ENABLE TRACE. EXECUTE BASIC SUBROUTINE. UPON
RETURN DISABLE TRACING.

CALL 1DF7H TURN TRACE ON
LD HL,LN LINE NO. OF BASIC SUBROUTINE
CALL 1EBIH DO A GOSUB 2000

CALL 1DF8H i TURN OFF TRACING

RET RETURN TO CALLER
LN DEM “2000” LINE NO. OF BASIC SUBROUTINE
DEFB 0
JP 1EDF RETURN

Returns control to the BA SIC statement following the last
GOSUB call. An assembly program called by a BASIC
subroutine may wish to return directly to the orginal caller
without returning through the subroutine entry point. This
exit can be used for that return. The return address on the
stack for the call to the assembly program must be cleared
before returning via 1EDF.

300 GOsuB 1500
310 GOsuB 1510
320 .

CALL BASIC SUBROUTINE
RETURN HERE FROM SUBROUTINE CALL

1500 z=UsRr1(0) CALL ASSEMBLY SUBROUTINE & RETURN
1510 z=usr2(0) CALL ANOTHER SUBROUTINE & RETURN

1530

+ ENTRY POINT FOR USR1 SUBROUTINE

. 3 DO WHATEVER PROCESSING IS

REQUIRED

POP AF ; CLEAR RETURN ADDR TO 1510
; FROM STACK

JP 1EDFH ; RETURN DIRECTLY TO 310

3 ENTRY POINT FOR USR2 SUBROUTINE

PERFORM NECESSARY PROCESSING
FOR USR2 CALL

POP AF CLEAR RETURN ADDR TO 1520
JP 1EDFH RETURN DIRECTLY TO 320
CALL 28A7 Write Message

Displays message pointed to by HL on current system
output device (usually video). The string to be displayed
must be terminated by a byte of machine zeros or a
carriage return code OD. If terminated with a carriage
return, control is returned to the caller after taking the
DOS exit at 41D0 (JP 5B99). This subroutine uses the
literal string pool table and the string area. It should not be
called if the communications region and the string area are
not properly maintained.

3 WRITE THE MESSAGE IN MLIST TO THE CURRENT SYSTEM
3 OUTPUT DEVICE.

LD HL,MLIST
CALL 28ATH

3 HL = ADDR OF MESSAGE
3 SEND TO SYSTEM OUTPUT DEVICE

MLIST DEFM ° THIS IS A TEST”

DEFB ODH 3 THIS TERMINATOR REQUIRED
CALL 27C9 Return Amount Of
Free Memory

Computes the amount of memory remaianing between the
end of the variable list and the end of the stack. The result
is returned as a single precision numberin WRAI (4121-
4124).

3 TAKE ALL AVAILABLE MEMORY BETWEEN THE STACK AND
THE END OF THE VLT AND DIVIDE IT INTO REGIONS FOR
3 USE IN A TOURNAMENT SORT

31

DL ; MUST GO LNHIBITED BECAUSE
3 THERE WILL BE NO STACK SPACE

; FOR INTERRUPT PROCESSING
CALL 27C9H 3 GET AMT OF FREE SPACE

CALL OA7FH ; CONVERT IT TO INTEGER
LD DE,(4121H) ; GET IT INTO DE

LD HL,500 i MAKE SURE ITS AT

RST 18H ; LEAST 500 BYTES

JR C,ERR ; ERR - INSUFFICIENT SPACE

LD (EVLT) ,HL 3 SAVE FOR RESTORATION
LD HL,0 ; SO WE CAN LOAD CSP
ADD HL,SP ; END OF AREA

H
LD HL,(40D1H) ; START OF AREA
LD (ECSP),HL ; SAVE FOR RESTORATION

CALL 2B75 Print Message
Writes string pointed to by HL to the current output
device. String must be terminated by a byte of zeros. This
call is different from 28A7 because it does not use the
literal string pool area, but it does use the same display
routine and it takes the same DOS Exit at41C1. Uses all
registers. This routine can be called without loading the
BASIC utility, if a C9 (RET) is stored in 41C1.

3 WRITE MESSAGE TO CURRENT OUTPUT DEVICE

LD HL,MLIST
CALL 2B7SH

; ADDRESS OF MESSAGE
3 SEND MSG TO SYSTEM DEVICE

MLIST DEPM “THIS IS A TEST”
DEFB 0 3 REQUIRED TERMINATOR

Internal Number Representation

BASIC represents integers as signed 16 bit quantites. Bit
15 contains the sign bit while bits 0-14 hold the
magnitude. The largest possible positive value that can be
represented is 32767 (dec.) or 7FFF (hex). The smallest
possible negative value that can be represented is -32768
(dec.) or 8000 (hex).

Bit ==> 15 1413121110 9 8 7 6 5 & 3 21

Magnitude

I = Negative

positive values 0000 - 7FFF (hex.) :0to 32767 (dec.)
Negative values FFFF - 8000 (hex.) : -1t0-32768
(dec.)

Note - negative values are represented as the one's
complement of the positive equivalent.

32

BASIC supports two forms of floating point numbers.
One type is single precision and the other is double
precision. Both types have a signed seven bit exponent.
Single precision numbers have a signed 24 bit mantissa
while double precision values have a signed 56 bit
mantissa. Both types have the following format

Bit -~> 31

Sugn of exponent: mmmmmed T

0 = positive, move Magnitude of the
binary point to the
right.

Mantisss (value) is left justified
(normalized) so that MS Bit is in
position # 23. If positive them bit 23
1 = Negative, move to move binary will be set to | during aritbmetic
binary point to the point. operations. Negative values stored as
left. positive, but with bit 23 on.

Sign of mantissa:

exponent. Number
of bit positions

0 = value positive
1 = value negative

The only difference bettween single and double precision
is in the number of bits in the mantissa. The maximum
number of significant bits representable in a positive
single precision value is 2 ** 24 -] or 8 388 607 decimal
or 7F FF FF hex. Double precision numbers have an
extended mantissa so positive values up to 2 ** 56- 1, or
3.578 X 10 ** 16 can be represented accurately.

These numbers 8 388 607 and 3.578 X 10 ** 16 are not
the largest numbers that can be represented in a single or
double precision number, but they are the largest that can
be represented without some loss of accuracy. This is due
to the fact that the exponent for either type of number
ranges between 2 ** -128 and 2 ** 127. This means that
theoretically the binary point can be extended 127 places
to the right for positive values and 128 to the left for
negative values even though there are only 24 or 56 bits of
significance in the mantissa. Depending of the type of data
being used (the number of significant digits) this may be all
right. For example Planck’s constant whichis 6.625 X 10
** _34 J-SEC could be represented as a single precision
value without any loss of accuracy because it has only four
significant digits. However if we were totalling a money
value of the same magnitude it would have to be a double
precision value because all digits would be significant

Chapter 3

Cassette & Disk

This chapter contains an introductory description of
physical I/O operations for the cassette and disk. The
sample programs are for purposes of illustration only and
are not recommended for adaptation to general
applications. There may be special situations, however
when a simple READ/WRITE function is needed and for
limited applications they will serve the purpose.

Cassette I/0

Cassette I/O is unusual from several aspects. First, each
byte is tranmitted on a bit-by-bit basis under software
control. This is radically different from all other forms of
I/O where an entire byte is transfered at one time. For
most /O operations, referencing memory or executing an
IN or OUT instruction, is all that is required to transfer an
entrie byte between the CPU and an external device.
However, If the device is a cassette, each bit (of a byte to
be transferred) must be transfered individually by the
software.

The second unusual aspect is the procedure used for
transmitting these bits. Exact timing must be adhered to
and the program must use different code depending on
whether a binary zero or one is to be written. Each bit
recorded consists of a clock pulse (CP) followed by a fixed
amount of erased tape followed by either another CP if a
binary one is represented, or a streach of erased tape if a
binary zero is being represented. A binary one and zero

would appear as:
|<———D——>|
<)|

|<—c~>l

>

Binary one

The distance between points A, B, C, and D is measured
in units of time. Because time can be measured in machine
cycles the value given for distances will be in machine
cycles where one instruction (any instruction regardless of
how long it is) equals one cycle and one cycle equals one
microsecond. This is crude but workable. The sum of A B
is supposed to be 2 milliseconds for Level II.

Using the crudity described above and counting instruc-
tions used in the Level II software gives the following
values.

A B 1.4 millisec per half bit 2.8 millisec per bit.
C .20 millisec * 2 per CP .40 millisec
D 1.0 millisec

Before discussing programming for cassette I/O in any
detail we should review the fundementals. Drive selection
is accomplished by storing either a 01 (drive 1) or 02
(drive 2) in 37E4. Motor start and loading or clearing the
data latch is achieved by sending a command value to the
cassette controller on port FF. The command value is
shown below.

7654 2
XXX XXX

x o

1
x 00 - erase tape

3
x :
Smne OUEsig 1 : 0l - positive signal
I I._ outsig 2 : 10 - negative signal
Not used
for cassette 1 = motor on

operations 0 = motor off
1 = 32 char/line

0 = 64 char/line

—

||

|<—————C1u¢k pulse >|< a pulse >

Binary zero

33

Be careful to preserve the current video character size
when sending commands to the cassette. The system
maintains a copy of the last command sent to the video
controller in 403D. Bit 3 of that word should be merged
with any commans issued to the cassette.

A write operation of one bit (called a bit cell) can be
divided into two steps. First a clock pulse (CP) is written
to signal the start of a bit. It is followed by a strip of erased
tape which is considered part of the CP. Next, another CP
is written if the bit is a one, or more blank tape is written if
the bit is a zero.

Read operations begin by searching for the clock pulse
and skipping to the data pulse area. The data pulse area is
then read returning a zero if blank tape was encountered or
aone if non-blank tape was found. Below are examples of
code that could be used for cassette operations. The code
used by Level II can be found around the area 01D9 -
02AS8 in the Level II listing.

Assembler Object Code Format

DOS loads disk object files with a utility program called
LOAD. They can also be loaded under DOS by entering
the name of a file that has an extension of CMD. The
format of a disk object file is shown below. It is more
complex than a cassette file because it has control codes
embedded in the object code. The loader reads the file into
a buffer before moving the object code to its designated
address. The control codes are used to indicated to the
loader where the code is to be loaded, how many bytes are
to be loaded, and where execution is to begin.

Control Code 01 (data to be loaded follows)
Count XX (count of bytes to load, 0 = 256)
Load Addreil XX (load address in LSB/MSB order)
XX
Load Data XX
XX
Control Code: 02 (beginning execution address follows)
XX (this byte is to be discarded)
Address XX (execution address in
XX (LSB/MSB order)

Comtrol Code: 03 - 05 (following data is to be skipped)
Count : XX (count of bytes to skip)
Skip Data H XX (this data is to be skipped)

XX

Cassette Recording Format

The recording format used by Level II is as follows:
1: BASIC Data Files

0000 ...0A XXXX .., .X
(25 zercs)

Synch Bytes Data Bytes
2: BASIC Programs

0000 ...0A5D3D3D3IYXXXX. .X000000

File Header BASIC EOF
Name Program Marker

3: Absolute Assembler Programs

asnunnnn:c‘{zzxxxx. ..XCI8TA
-
T TT Transfer address
Syn:h sun Program or Data| Tramsfer
Checks address follows
File buury Load addres
Name file Number of bytes to load

34

SYLECT UNLT ND TURN ON MOTOR

LD A,01 3 CODE FOR UNIT 1
LD 37 EAH) ,A ; SELECT UNIT 1
LD A,04 ; CCMMAND VALUE: TURN ON MOTOR

wT (DFTH),A 3 START MOTOR, CLEAR DATA LATCH

WRITE BYTE CONTAINED IN THE A REGISTER

PUSH AF
PUSH BC
PUSH DE
PUSH HL 3 SAVE CALLERS REGISTERS
LD L,8 3 NUMBER OF BITS TO WRITE
LD H,A 3 H = DATA BYTE
LOOP CALL cCP ; WRITE CLOCK PULSE FIRST
LD AH 3 GET DATA BYTE
RLCA ; HIGH ORDER BIT TO CARRY
LD H,A ; SAVE REPOSITIONED BYTE
JR NC,WR 3 BIT WAS ZERO. WRITE BLANK TAPE
CALL cCP BIT WAS ONE. WRITE A ONE DATA PULSE

ALL BITS -ROM DATA BYTES WRITTEN ?
NO! JUMP TO LOOP

PoP HL YES! RESTORE CALLERS REGISTERS
POP DE

POP BC

PoP AF

RET 3 RETURN TO CALLER

WR LD B,135
WRl DJNZ WRI

JR TEST
CP LD A,05

OUT (OFFH),A

; DELAY FOR 135 CYCLES (988 USEC) WHILE
BLANK TAPE 1S BEING WRITTEN

GO TEST FOR MORE BITS TO WRITE
COMMAND VALUE MOTOR ONE, OUTSIG 1
START OF CLOCK PULSE

LD B,57 DELAY FOR 57 (417 USEC) CYCLES
cel DJNZ CPl GIVES PART OF CP
LD A,06 COMMAND VALUE: MOTOR ON, OUTSIG 2

OUT (OFFH),A ; 2ND PART OF CLOCK PULSE

LD B,57 i DELAY FOR 57 CYCLES (417 USEC)
CPZ DINZ CP2 GIVES PART OF CP

AL COMMAND VALUE: MOTOR ON, NO OUTSIG
OUT (OFFH),A ; START ERASING TAPE

LD B,136 DELAY FOR 136 CYCLES (995 USEC)
CP3 DJNZ CP3 GIVES TAIL OF CLOCK PULSE
RET ; BRETURN TO CALLER
READ NEXT BYTE FROM CASSETTE INTO A REGISTER
XOR A 3 CLEAR DESGINATION REGISTER
PUSH BC
PUSH DE
PUSH HL 3 SAVE CALLERS REGISTERS
LOOP LD 8,8 ; NUMBER OF BITSS TO READ
CALL RB 3 READ NEXT BIT. ASSEMBLE INTO
3 BYTE BUILT THUS FAR.
POP HL
DJNZ LOOP ; LOOP UNTIL 8 BITS USED
POP DE
POP BC ; RESTORE CALLERS REGISTERS
RET ; RETURN TO CALLER

PUSH AF
RBl IN (OFFH),A ; READ DATA LATCH
RLA i TEST FOR BLANK/NON-BLANK TAPE
JR NC,RBL ; BLANK, SCAN TILL NON-BLANK
i IT WILL BE ASSUMED TO BE START
i OF A CLOCK PULSE.
LD 8,57 ; DELAY FOR 57 CYCLES WHILE
RBZ DJNZ RB2 ; SKIPPING OVER FIRST PART OF CP
LD A,06 , COMMAND VALUE: MOTOR ON, CLEAR
OUT (OFFH),A ; DATA LATCHES
LD 8,193 ; DELAY FOR 193 CYCLES WHILE
RB3 DJNZ RB3 i PASSING OVER END OF CP
I8 A,(OFFH) ; WE SHOULD BE POSITIONED INTO
i THE DATA PULSE AREA. READ
i THE DATA PULSE.
LD B,A i SAVE DATA PULSE
POP AF ; ACCUMULATED BYTE THUS FAR
R B i DATA PULSE TO CARRY WILL BE A
i ZERO IF BLANK TAPE, | LF NON-BLANK
RLA i COMBINE NEW DATA PULSE (1 BIT)
PUSH AF ; WITH REST OF BYTE AND SAVE
LD AL i COMMAND VALUE: MOTOR ON, CLEAR OUTSIG
OUT (OFFH),A ; CLEAR DATA LATCHES
LD B, 260 ; DELAY LONG ENOUGH TO SKIP TO
RB4 DINZ RB4 ; END OF DATA PULSE
POP BC
POP AF ; A = DATA BYTE
RET

TURN OFF MOTOR

LD A,00 ; COMMAND VALUE: MOTOR OFF
ouT (OFFH),A ; TURN MOTOR OFF
RET

Disk 1/0

The disk operations discussed in this section are
elementary inasmuch as there is no consideration given to
disk space management or other functions normally
associated with disk I/O. What is presented are the
fundamental steps necessary to position, read, and write
any area of the disk without going through DOS. It will be

Because of that, a request for status (load 37EC) cannot
occur for 50 microseconds following the issuing a
command (store 37EC).

Unit selection is accomplished by storing a unit mask
value into location 37E1. That mask has the format:

BIT 7.6 5 643 210
X X X X X X X X

SELECT UNIT O
SELECT UNIT 1
SELECT UNIT 2
SELECT NIT 3

assumed that the reader is familiar with the 1/O facility
provided by DOS and is aware of the pitfalls of writing a

Mot Used — 4 | \E

R

diskette without going through DOS.

Disks which normally come with a Model I system are
single sided, 35 track 5 1/4’ mini-drives. It is possible to
substitute other drives with a higher track capacity such as
40, 77, or 80 tracks, but then a modified version of DOS
must be used. Dual sided mini-drives are becoming
available and eventually they should replace the single
sided drives. Dual density drives are another type of mini-
drive that are available, but like the dual sided drives they
require a modified version of DOS.

The type of programming used in this example is called
programmed I/O. It is called that because the program
must constantly monitor the controller status in order to
determine if it is ready to send or recieve the next data
byte. Thus each byte is transfered individually under
program control. An alternative to programmed I/0 is
DMA or Direct Memory Access. Using this method the
controller is told the number of bytes to transfer and the
starting transfer address and it controls the tranfer of data
leaving the CPU free to perform other tasks. On the Model
I systems there is no DMA facility so programmed I/O
must be used.

This example will assume that a DOS formatted diskette
is being used. New diskettes are magnetically erased.
Before they can be used they must be formatted. That is
each sector and teack must be uniquely identified by
recording its track and sector number in front of the data
area of each sector. There is some variability in the coded
information which preceeds each sector so it is not always
possible to read any mini-diskette unless it orginated on
the same type of machine.

Like most of the I/O devices on the Model I the disk is
memory mapped. There are five memory locations
dedicated to the disk. They are:

37E1 Unit Select Register

37EC Command/Status Register
37ED Track Update Register
37EE Sector Register

37EF Data Register

All disk commands except for unit selection are sent to
37EC. If the command being issued will require
additional information such as a track or sector number,
then that data should be stored in the appropriate register
before the command is issued. You may have noticed that
the command and status register have the same address.

More than one unit can be selected at a time. For example
a mask of 3 would select units 0 and 1. When any unit is
selected the motor on all units are automatically turned
on. This function is performed automatically by the
expansion interface.

Controller Commands

The Model I uses a Western Digital FD1771B-01 floppy
disk controller chip. It supports twelve 8-bit commands.
They are:

Restore: Positions the head to track 0

7 6 5 o 3 2 1 0
T T
Lofofofofxixfxix]
Mode :_.J_ _l_-— Stepping rate:

00 = No verify head position 00 = 6 wS / step
0l = Verify bead position 0l = 6 mS / step
10 = Not used 10 = 10 o8 / step
11 = Verify head position 11 = 20 oS / step

<— Bit

Seek: Positions the head to the track specified in the data
register (37E).

DoDnonnn
Mode e L Stepping rate

Step: Moves the head one step in the same direction as
last head motion.

Oonnnnon)
Track update o | T stepping cate
Mode

0 = No track register update
1 = Track register update

35

Step Head In: Moves the head in towards the innermost
track one position.

lofs folujefufxfx]
Track upd.n.l | _L::zpin(rate

Step Head Out: Moves the head out towards the outer-
most track one position.

nnnnoong)
Track upd-(l_l | —L ::zpiq rate

Read Data: Transmits the next byte of data from the
sector specified by the value in the sector register.

Llofolx[xfx]ofo]

Nulti-u:er I— Head settle:

0 = Read 1 sect 0 = No delay

1 = Multi-sector 1 = 10 S delay
Format:

0 = Non IBM
1 = 1BM

Write Data: Sends the byte of data in the data register to
the next position in the sector specified by the value in the
sector register.

Clofolefefx]x]]
Multi-sector .I l_L Address mark:

0 = Write 1 00 = FB, 01 = FA
1 = Multi-sector 10 = F9, 11 = FB
Format d Head settle:

0 = Non IBM 0 = Noa

1 = 1BM 1 = 10 n§ delay

Read Track: Reads an entire track beginning with the
index mark.

nNDoOnon|

Read Address: Reads the address field from the next
sector to pass under the head.

Lftfofofofifolo]

36

Write Track: Writes a fuil track starting at the index mark
and continuing until the next index mark is encountered.

Llefefrferjofo]

Force Interrupt: Terminates the current operation and /
or generates an interrupt if one of the following four
conditions is true:

Llefofife]=f=]x]
thniun conditions:

00 = Nome, 01 = Interupt on rea
02 = Interupt om not ready

04 = Interupt on index pulse

10 = Nome

Read Status: The status of the Floppy Controller is
returned whenever location 37EC is read. The status
word has the following format:

lx]xlx]xlx]xlx[:l Read / Vrite Seek
Ge Busy Busy
| I_ DRQ DRQ
L——- Lost Data Missing Addr
. CRC Error 0
. Miseing Record 0
[} 0
.0 Write Prot
. Not Ready Not Ready |

Disk Programming Details

Disk programming can be broken down into several easily
managed steps. They are:

1. Select the unit and wait for ready.

2. Position the head over the desired track.

3. Isue the Read/Write command for the required sector

4. Transfer a sectors worth of data, on a byte at a time basis.
Each transfer must be preceeded by a test to see if the controller
either has the next data byte, or is ready to accept the next data

byte.

This program demonstrates a single sector read from track
25 (decimal), sector 3.

ORG 70008

LD BC,25% BYTE COUNT

PUSE BC B¢ =1C=0

LD HL,BUFF BUFFER ADDRESS

LD A,l UNIT SELECT MASK (DRIVE 0)
LD (37E1H),A SELECT DRIVE 0, START MOTOR
LD 0,25 TRACK NUMBER

b E,3 SECTOR NUMBER

LD (37Em),DE SPECIFY TRACK AND SECTOR

TRACK NO. TO DATA REGISTER
(37eFH)

SECTOR NO. TO SECTOR REGISTER.
SEEK QP CODE. NO VERIFY

(FOR VERIFY 17H)

SEEK REQ. TO COMMAND REGISTER.
GIVE CONTROLLER A CHANCE

TO DIGEST

COMMAND BEFORE ASKING STATUS

g

A,lBE

LD (37ECH),A
b 3,6

DELAY DJNZ DELAY

WAIT LD A,(37ECH) GET STATUS OF SEEK OP
BIT 0,A TEST IF CONTROLLER BUSY
JR NZ,WAIT IF YES, THEN SEEX NOT DONE
LD A,88H SEEK FINISHED. LOAD READ

COMMAND
LD (37ECH),A ; AND SEND TO CONTROLLER

LD B,6 i GIVE CONTROLLER A CHANCE TO
DELAY1 DJNZ DELAYL ; DIGEST COMMAND BEFORE
REQUESTING
A STATUS
WAITL LD A,(37ECH) NOW, ASK FOR STATUS
BIT 1,A IS THERE A DATA BYTE PRESENT ?

JR Z,WAIT]
LD A,(37EMH)

NO, WAIT TILL ONE COMES IN
YES, LOAD DATA BYTE

LD (HL) ,A STORE IN BUFFER

INC HL BUMP TO NEXT BUFF ADDR

DEC 3C TEST FOR 256 BYTES TRANSFERED
Lo A,B COMBINE B AND C

or c TO TEST BOTH REGISTERS

Jr NZ,WALT GO GET NEXT BYTE

DOS Exits

DOS Exits were discussed in general terms in chapter 1.
They are used as a means of passing control between
Level II BASIC and Disk BASIC. The Exit itself is a
CALL instruction in the ROM portion of the system to a
fixed address in the Communications Region. Contained
at that CALL’d address will be either a RETURN
instruction or aJUMP to another address in Disk BASIC.
On a Level II system without disks these CALL'd
locations are set to RETURNS during IPL processing.
On disk based systems they are not initialized until the
BASIC command is executed. At that time JUMPS to
specific addresses within Disk BASIC are stored at the
CALL locations.

The term DOS Exit really has two different meanings.
DOS Exits are calls from ROM BASIC to Disk BASIC
while in the Input Phase, while executing a system level
command, or while executing a verb action routine. These
exits allow extensions to be made to the routines in ROM.
The exits are not stragetically located so that an entire
ROM routine could be usurped, but they are conveniently
placed for intercepting the majority of the ROM routine
processing. Another type of DOS Exit is the Disk BASIC
Exit. These exits are radically different from the other
ones, they are only entered on demand when a Disk
BASIC token is encountered during the Execution Phase.
All of the processing associated with these tokens is
contained in the Disk BASIC program. There is no code
in ROM for executing these tokens.

The following descriptions are for DOS Exits as opposed
to Disk BASIC Exits. The calling sequence for each of the
DOS Exits vary. Before writing a program to replace any
of these Exits study the code around the CALL, paying
particular attention to register usage. What happens at the
exits is not discussed here. If it is important, disassemble
the Disk BASIC utility program and examine the code at
the BASIC address assigned to the exit. An example of
how both types of Exits can be intercepted can be found in
chapter 6.

All these addresses are for NEWDOS 2.1, TRSDOS
addresses will differ.

Level II DOS Exits BASIC
ADDRESS DESCRIPT ION ADDRESS ADDRESS
19EC Call to load DISK BASIC error 41A6
processing. Error number must
be in E-register.
27FE Start of USR processing .. 41A9 5679
1AIC BASIC start up, Just before . . 41AC SFFC

BASIC s ‘READY” message.
At start of keyboard ioput.
. Input scanner after tokenizing
curreat statement,
1AEC Input scanmer after udating 4185 5BD7
program statement table.

. 41AF 598E
. 41B2 6033

Ioput scanner after reinitial- 41B8 SB8C
izing BASIC.
Initializiog BASIC for suiseencnanss 41BB 60Al
new routine. During END proce.

2176 During initializiog of system WLIBE S77C
output device.

032C During writing to system output 41Cl1 59CD
device.

0358 When scanning keyboard. Called 41C4 59CD

from INKEYS, at end of execution
of each BASIC statement.

LEA6 At start of KUN NNN .. SFI8
processing.

206F At beginning of PRINT ui.eeevreveenn. 4LICA 5ALS
processing.

20C6 During PRINT # or PRINTcceeeee. 41CD SBYA
item processing.

2103 When skippiog to next line on 4100 5B99
video during a BASIC output
operation.

2108/214l At start ot PRINT on cassette .. . 4103 5B6S

and during PRINT TAB processing.
Z219E At begioning of INPUT processing. ... 4106 5784
2220 During READ processing whem a ,...... 41DC SE63

variable has been read.
2278/2218 At end of READ proceseing ..
2B44/2B44 From LIST processing.
02B2..... During SYSTEM commsnd operation.

. 41DF 579C

. 41E2 5851

37

Disk BASIC Exits

These exits are made from Level II during the Execution
Phase whenever a token in the range of BC - FA is
encountered. Tokens with those values are assigned to
statements which are executed entirely by Disk BASIC.
When a token in the given range is found control is passed
indirectly through the Verb Action Routine List (see
chapter 4) to the appropriate Disk BASIC Exit in the
Communications Region. Control is returned to Level IT
at the end of the verb routine’s processing.

DISK BASIC
ADDRESS

Disk Tables

The most frequently used disks on the Model I series are 5
1/4’ single sided single density mini-floppy drives. A
variety of other units are available and could be used,
however some hardware and software modifications
would be necessary. Examples of other units would be: §
1/4’ dual headed and dual density drives; 8' single and
dual headed plus single and dual density units; and various
hard disks with capacities up to 20 Mbytes.

The terms single and dual headed refer to the number of
read/write heads in a unit.Most micro-computer systems
use single headed drives but dual headed drives are now
becoming more commonplace. A dual headed drive has
twice the capacity of a single headed unit because two disk
surfaces can be accessed rather than one.

Dual density describes the recording method used. In
single density mode each bit cell consists of a clock pulse
followed by a data pulse while in dual density recording
clock pulses may be omitted if the data pulse is repetitious.
Using this method more sectors can be written on a track
than in single density format. The recording method used
is dictated by the controller and the software, but with dual
density drives clock pulses may be omitted and the timing
is more critical, hence not all drives can be used for dual
density.

38

Eight inch drives are essentially the same as 5 1/ 4" drives
except they usually only come in one track size (77
tracks). As with the smaller units they come in both single
and dual density. Since their radius is larger they have
more sectors per track. Track capacities for 8’ drives are
typically: 26 - 128 byte sectors / track; 15 - 256 byte
sectors / track; 8 - 512 byte sectors / track; 4 - 1024 byte
sectors / track.

Track capacities for 5 1/4’ single density are: 20 - 128
byte sectors / track; 10 - 256 byte sectors / track; 5 - 512
byte sectors / track; and 2 - 1024 byte sectors / track. Dual
density 5 1/4’ drives have capacities of: 32 - 128 byte
sectors / track; 18 - 256 byte sectors / track; 08 - 512 byte
sectors / track; and 4 - 1024 byte sectors / track.

Hard disks are too varied to classify. Basically a hard disk
has more capacity, faster access time, higher transfer
rates, but the disk itself may not be removeable. Without a
removeable disk file backup can be a serious problem, a
second hard disk is an expensive solution.

Shown below is a diagram of a 5 1/4” 35 track diskette.

|— Sector 1
- Sector
| 1odex nole

=
AN

o

Each diskette has 35, 40, 77, or 80 tracks depending on
the drive used. Each track has 10 sectors of 256 bytes.
Sector sizes can vary from 2 to 1024 bytes per sector. But
the software must be modified to handle anything other
than 256, because that is the size assumed by DOS. The
Model I uses a semi IBM compatible sector format. It is
not 100% compatible because track and sector numbers
on IBM diskettes are numbered from 1 not 0 as in
TRSDOS.

DOS uses a file directory to keep a record of file names
and their assigned tracks and sectors . The directory
occupies all 10 sectors of track number 1 1. Itis composed
of three parts: a disk map showing available sectors (track
L1, sector 1); a file name in use index that allows the

[Tracks 0 to X
|— toter-seccor ,

directory to be searched from an advanced starting point
(called the Hash Index Table track 11, sector 2); and the
directory sectors themselves (track 11 sector 3 thru track
11 sector 10).

Track 11H Sector 0 AT
tor

Sector

Sector 2 rectory
Sector
e -

As well as the directory track there is one other special
area on a diskette. Track O sector 0 contains a system
loader used during the disk IPL sequence to load DOS.
The loader is read into RAM locations 4200 - 4300 by
the ROM IPL code which then passes control to it so
that the DOS can be loaded.

Disk Track Format

Before any diskette can be used it must be initialized
rmatted either the FORMAT or COPY (BACKUP if
using TRSDOS) utility programs. Formatting initializes
the diskette which is orginally magnetically erased. The
formatting operation writes the sector addresses for every
addressable sector plus synch bytes which will be used by
the controller to aid it locating specific addresses. In
addition the formatting operation specifies the sector size,
the number of sectors per track, and the physical order of
the sectors .

Mini-floppys are usually formatted with 128, 256, 512, or
1024 byte sectors although other sizes may be formatted.
DOS uses the following track format:

Position Number of Bytes Contents
Index 14 FF
6 00
- 1 FE (Address marker)
1 Track Number
1 Head Number
One 1 Sector Number
Sector. 1 Sector Length Code :
00 = 128 bytes
Ten per 01 = 256 bytes
track, e 02 = 512 bytes
03 = 1024 bytes
Sector 2 CRC
order is 11 FF : Sector 0 omly, 12
0,5,1,6, 1 A0 : bytes of FF all others
2,7,3,8, 1 FA (Data Field Mark)
4,9. 256 Data
2 CRC
12 FF : Except the last (9)
L 6 00 : which is followed by
FE 130 bytes of FF
GAT Sector (Track 11 Sector 1)

Previously we mentioned the file directory system used by
DOS. It is based in part on the ability to dynamically

assign disk space on an as-needed basis. Conversly, it
must be possible to reuse space which has been released
and is no longer needed. The basic vehicle used for
keeping track of assigned and available disk space is the
Granuale Allocation Table (GAT). Obviously, GAT
data must be stored outside the machine if a permanent
record is to be maintained. The GAT sector is used for this
storage.

With the disk descripton there was a definition for a track
and sector. These terms will now be re-defined into the
DOS term granule. A granule is 5 sectors or half of a track.
It is the minimum unit of disk space that is allocated or de-
allocated. Granules are numbered from O to N, where N is
a function of the number of tracks on a diskette. A record
of all granules assigned is maintained in the GAT sector.

Recalling the disk dimensions mentioned earlier we can
compute the number of granules on a diskette as:

Granule = (Number of tracks * 10) / 5

Using a 35 track drive with the default DOS disk values of
10 sectors per track and 5 sectors per granule this gives 70
granules per diskette.

The GAT sector is divided into three parts. The first part
is the actual GAT table where arecord of GAT's assigned
is maintained. Part two contains a track lock out table, and
part three system initialization information.

Relative
Byte 0 —> Granule Byte track 0 jr——
Granule byte track 95 T
60 --> Lockout byte for track 0
Lockout byte for track 95
CE —>
Password (2 bytes)
D0 —>
Disk Name (8 bytes)
D8 —-> Creation Date (8 bytes)
E0 --> AUTO procedure
(2 byees)
il — L
Track available 1 111 11 00 cmm——————
Locked out 11111111
Lockout byte (1 per track)
Granule 11111r1xx
Allocation eve. Sectors 0 - 4
Byte (1 per track) fesene Sectors 5 - 9
0 = Assigned 1 = Available

Hash Index Table (Track 11 Sector 2)

The Hash Index is a method used to rapidly locate a file
without searching all of the directory sectors until it is
found. Each file has a unique value computed from its
name. This value is called the Hash Code. A special
sector in the directory contains the Hash Codes for all

39

active iiles on a diskette. When a tile is created, its Hash
Code is stored in the hash sector in a position that
corresponds to the directory for that file. Note, the hash
position does not give the file position, just its directory
sector position. When a file is KILL'd it code is removed
from the hash sector.

Files are located by first computing their hash value, the
Hash Index Sector is then searched for this value. if it is
not found then the file does not exist. If the code is found
then its position in the Hash Index Sector is used to
compute the address for the directory sector containing
the file name entry.

Hash code values range from 01 to FF. They are
computed from an 11 character file name that has been left
justified, blank filled. Any file name extension is the last
three characters of the name. The code used for computing
a hash value is shown below:

LD B,11 NO. OF CHARS TO HASH
LD c,0 ZERO HASH REGISTER
LooP LD A,(DE) GET ONE CHAR OF NAME
INC DE BUMP TO NEXT CHAR
XOR c HASH REG. XOR. NEXT CHAR
RLCA 2%(HR. XOR. NC)
LD C,A NEW HR
DINZ Loop HASH ALL CHARS
LD AC GET HASH VALUE
OR A DON“T ALLOW ZERO
JNP DONE EXIT, HASH IN A
INC A FORCE HASH TO 1
DONE . EXIT, HASH IN A

Space for codes in the Hash Sector is assigned sequen-
tially beginning at an arbitrary point. If the hash sector is
full aDOS error code of 1A is given otherwise the sector is
scanned in a circular manner until the first available (zero)
entry is found.

Not all words in the Hash Sector are used. Addresses in
the range 10 - 1F, 30 - 3F, 50 - SF are excluded. Only
those addresses ending in the digits 00- 07,20 - 27 etc are
assigned. This speeds the computation of the directory
sector number from the hash code value address. The
Hash Sector is shown below.

Relative
Byte 00 --> Zero or Hash code
o1 —> .
R — — HASH codes for
02 —> . files in sector
s ——— 2 of directory
track
07 —>
10 —> Not Used
1F —>
R — HASH codes for
20 —> . files in sector
. 2 of directory
track
27 -=>
30 -=> Not Used
37 —>
Sector 4
FO —>
Not Used
F? —>

40

Disk DCB

Each disk file has associated with it a 32 byte DCB which
is defined in the user’'s memory space. When the file is
opened the DCB must contain the file name, a name
extension if any, and an optional drive specification. As
part of the OPEN processing the DCB is initialized for
READ and WRITE operations by copying portions of the
directory entry into the DCB. Afterinitialization the DCB
appears as shown.

Relative Byte 0 Open fisg
1 TTTT Access flags
3 Reserved
4 Sector buffer sddr
5
6 Next record addr
7 1 I Drive number
8 Overflow pointer
9 EOF address
A Record size
B Next record ¢
C
D Number of records
E 1st
F CAP
10 Total granules
11 thru lst GAP
12 2nd
13 GAP
14 Total granules
15 I thru 2nd GAP
16 3rd
17 I GAP
18 Total granules
19 T thru 3rd GAP
1A ath
1B 1 cAP
1c Total granules
1D I thru 4th GAP
1E End of GAP
1F 1 Flag

where

BYTE 0 bits 0-6 : reserved
bit 7 : 0 = file not opened
1 = file opened

BYTE 1 bits access perrmission flag.

bit reserved
bit : 0 = sector buffer available
1 = flush sector buffer befor using
bit 5 : 0 = look for record in current buffer
1 = unconditionally read next sector
bit 6 : reserved

bit 7 : 0 = sector /0
1 = logical record 1/0

BYTE 2 reserved

BYTE 3 - 4 sector buffer address in LSB/MSB order

BYTE 5 pointer to next record in buffer

BYTE 6 drive number

BYTE 7 bits 0-3 sector number - 2 of overflow entry
bits 3-4 reserved
bits 5-7 offset/16 to primary emtry in directory

BYTE 8 pointer to end of file in last sector

BYTE 9 record size

BYTE 10 - 1l next record number in LSB/MSB format
BYTE 12 - 13 number of records in file

BYTE 14 - 15 first GAP

BYTE 16 - 17 total granoules assigned thru first
BYTE 18 - 19 second GAP

BYTE 20 - 2l total granules assigned thru second GAP
BYTE 22 - 23 third GAP

BYTE 24 - 25 total granules assigned thru third GAP
BYTE 26 - 27 fourth GAP

BYTE 28 - 29 total granules assigned thru fourth GAP
BYTE 30 - 31 end of GAP string flag (FFFF)

Directory Sector (Track 11 Sector 3
Track 11 Sector 9)

Directory sectors contain file descriptions used when
accessing a disk file. These descriptions contain among
other things the file name, passwords, and a list of the disk
addresses occuppied by the file. The directory sectors are
divided into eight fixed-length partitions of thirty two
bytes each. Each partition contains one file description.
Empty partitions are indicated by a flag in the first byte of
the partition.

Space in the directory is assigned when a file is initially
created using a DOS OPEN or INIT call. There is no
particular order in the way space is assigned because the
directory sector number used is determined by a hash code
derived from the file name. Partition space in the sector is
assigned in sequential order.

lative
Byte 0] Entry #1

E0
Entry # 8

Relative Byce o 1 1 | [[Access control
1 I T overs low
3 Reserved
4 EOF byte offset
5 Record length
6 File Name
7 .
8 .
9 .
A .
B .
c .
D Name Extension
E .
F .
10 Update Password
11 .
12 Access Password
13 .
14 EOF Sector
15 1 Track
16 Number of § GAP 1
17 1 Granules
18 . car 2
19 I . |
1A . .
18 I - .
1c . .
1D 1 . .
1E . GAP 5
IF 1 . I

BYTE 0

BYTE 1

BYTE 2
BYTE 3
BYTE 4

BYTES 5

BYTES 13
BYTES 16
BYTES 18
BYTES 20
BYTES 22

lst Byte:
a) If
to

b) An
c) An
The

2nd Byte:

bit
000
001
0l0
o1l
100
101
o
111

bit
bit
bit
bit
bit

used
Bits
for tl
Bits

s 0-2 = file access :anuul flags
= uorestricted ac
- KXLL/RENAHI/HIITE/IEAD/EXECUTE access
- RENAME/WRITE/READ/EXECUTE access

~ reserved

- WRITE/READ/EXECUTE access

- READ/EXECUTE access

- EXECUTE access only

=~ restricted file no access

= 0, file is displayable. 1, file is iovisible.
= 0, this entry is available. 1, entry is
reserved

= 0, user file. 1, SYSTEM file,

= 0, primary entry. 1, overflow entry.

~ouwesw
[

for overflow entries only.

0 - 3 byte offset/10 in primary sector to the entry
his file

4 = 7 sector number - 2 of primary entry.

erved
Bits 0 - 7 byte offset to end of file in last sector.
Bits 0 - 7 record length.
~.12 File name in ASCII, left justified, blaok filled.
=15 File name extension in ASCII left justified, blank filled
-1 word (encoded).
- 19 word (encoded).
= 21 Last sector number in file. LSB/MSB order.
= 31 Five two-byte entries called Granule Assignment
Pairs (GAPs). Each GAP comsists of a starting track numbe
(byte 1) and 8 count of the number of consecutively
asssigned granules (byte 2). A string of these GAP's in
proper order define the disk addresses igned
to a file. The end of a GAP string will be signaled by
a FF in bytes 1 and 2 if there are no more than five
GAP assigned, for an FE followed by the disk address of
another directory sector containing the remainder of
the GAP“s. The directory entry containing the overflow
GAP“s is called an overflow entry and contains only the
continuation of the CAP string. There is no limit to the
number of overflow entries that may be assigned.
CAP bytes are formatted sa shown below
Bits 0 - 7 contain one of the following:
the contents of lst byte is less than FE it is assumed
be a track aumber.
FF if there are no more GAP This is the end of a GAP string
FE if there are more GAP entries in an overflow sector.
next byte contains the overflow sector address.

The

intrepretation of this byte deplndl on the contents of

the preceeding byte. If = FF, thean this byte is not contains an FF.
If preceeding byte = FE, then:

holds in bits 0 ~ 3 th

sector number - 2 of overflow sector.

bits 4 - 7 the byte offset/10 in the overflow sector to the
entry with the remainder of the GAPs”.
If preceeding byte < FE, then this byte has in bits 0 - 3 the pumber of

consecutive
fla,

Bit 4 =

snules minus 1. This value varies frow O up to 1z.
indicating whether the first or second granule in

the starting track has been assigned. Lf bit 4 = 0, then the
firat graoule was assigned. if bit 4 = 1, then the second granule
atarts with sector,

5) was assigned.

Following is an example of a GAP string:

byte 22: 23 file starts on track 23

byte 23: 06 there are 7 granules assigned
TRK (23) $(0-%9), TRK (24) $(0-9)
TRK (25) $(0-0), TRK (26) S(0-4)

byte 24: 15 file continues on track 15

byte 25: 23 for 4 granules
TRK (15) $(5-9), TRK (16) s$(0-9)
TRK (17) s(0-4)

byte 26: FF end of GAP string

byte 27: FF end of GAP string

41

Chapter 4

Addresses & Tables

Adddress

(Hex)

0000 -->
Level LI ROM

(Internal Tables)

E s N e
I1/0 Addresses

4000 —» | == = = - - e - - oo

Communications
Region
(External Tables)

—
—
s00 I |-
DOS Nucleus
5200 St S
Disk BASIC
6700 >
Program
Statement
Table
>

Variables List Table
Simple Variables

Subscripted Variables

[T

Free Space

String Area

Level II Internal Tables

Internal tables are those lists and tables that are resident in
the Level II system. Since they are ROM resident their
contents and address are fixed. They are used by BASIC
for syntax analysis, during expression evaluation, for data
conversions, and while executing such statements as FOR
and IF.

42

Reserved Word List (1650-1821)

This table contains all of the word reserved for use by the
BASIC interpreter. Each entry contains a reserved word
with bit 8 turned on. During the Input Phase the incoming
line is scanned for words in this list. Any occurance of one
is replaced by a token representing it. The token is
computed as 80 plus the index into the table where the
word was found. A list of those words and their token
values follows:

Word Token Word Token Word Token

* Disk BASIC tokens

Precedence Operator Values (189A - 18A0)

This table contains numeric values used to determine the
order of arithmetic operations when evaluating an
expression. As the expression is scanned each operator/
operand pair plus the precedence value for the previous
operand is stored on the stack. When an operator of higher
precedence than the preceeding one is found the current
operation is performed giving an intermediate value that is
carried forward on the stack. The values shown for
relational operations are computed rather than being
derived from a table look-up.

Operator Function Precedence Value
UP ARROW (Exponent) 7F
* (Multiplication) c
/ (Division) ic
+ (Addition) 79
- (Subtraction) 79
ANY (Relational) 64
AND (Logical) 50
OR (Logical) 46
<= (Relational) 06
<> (Relational) 05
>= (Relational) 03
< (Relational) 04
= (Relational) 02
> (Relational) ol

Arithmetic Routines (18AB - 18C8)

There are really three tables back-to-back here. They are
used during expression evaluation to compute inter-
mediate values when a higher precedence operator is
found.

Arithmetic Routine Addresses

Single Double
Integer Precision Precision String
Addition 0BD2 0716 oc77 298F
Subtraction 08C7 0713 oc70 NCNE
Multiplication 0BF2 0847 ODA1 NONE
Division 2490 08A2 ODES NONE
Comparison 0A39 0A0C 0A78 NONE

Data Conversion Routines (18Al - 18AA)

These routines convert the value in WRA1 from one
mode to another. They are called by the expression
evaluator when an intermediate computation has been
made, and the result needs to be make compatible with the
rest of the expression.

Conversion Routine Addresses

Destination Mode Address
String 0AF4
Loteger QATF
Single Precisicn 0A3B1
Double Precision 0ADB

Verb Action Addresses

Verb Action Routines (1822 - 1899)

There are two Verb Action Address Lists. The first one is
used by the execution driver when beginning execution of

anew statement. [t contains address of of verb routines for
the tokens 80 - BB. The first token of the statement is used

as an index in the range of 0 - 60 into the table at 1822 -
1899 to find the address of the verb routine to be executed.
Ifthe statement does not begin with a token control goes to
assignment statement processing. The second table
contains the addresses of verb routines which can only
occur on the right side of an equals sign. If during the
expression evaluation stage a token in the range of D7 -
FA is encountred it is used as an index into the table at
1608 - 164F, where the address of the verb routine to be
executed is found. There is no address list for the tokens
BC - D6 because they are associated with and follow
other tokens that expect and process them.

‘able Address 1822 - 1899)

Token Verb Address Token Verb Address

..1Cal
L0135
L4135
.2286
.219A
+21EF
.1EC2
.2039
.1EBL
.1F07
.1F07
.1DF8
+1E03
.1E09
.2E60
+LFAF
+1FC6

(Table Address 1608 - 164F)

TOKEN VERB Address TOKEN VERB Address

43

Error Code Table (18C9- 18F6)

Address Letter Type Address Letter Type

Error codes printed under Level II are intrepreted by
using the error number as in index into a table of two letter
error abbreviations. The format of the error code table is

as follows:

Error Code Cause Originating
Number Address
0 NF NEXT WITHOUT FOR 22¢2
2 SN SYNTAX ERROR (NUMEROUS DA,2C7 ,EEF
CAUSES) 1C9E,1D32,1E0E

1E66,2022,2358

2615,2AE9,2DE2
4 M NETURN WITHOUT GOSUB s Program Statement Table (PST)
[oD OUT OF DATA (READ) 2214,2242
8 FC NUMEROUS 1E4AC
A ov NUMERIC OVERFLOW 782
4 [} OUT OF MEMORY 197¢ .
M UL MISSING LINE NUMBER 1208 The Program Statement Tab_le contains BAS!C state-
10 BS INDEX TOO LARGE 213F ments entered as a program. Since it is RAM resident and
N Erowro e e Lol its orgin may change from system to system there is a
16 ID INPUT USE LNCORRECT 2833 pointer to it in the Communications Region at address
R b bries 40A4. As each line is entered it is tokenized and stored in
ic LS STRING TOO LONG 2945 the PST. Statements are stored in ascending order by line
1E ST ;i:gtui{nlm POOL 2843 number regardless of the order in which they are entered.
20 CN CONTINUE NOT ALLOWED LDEB Each entry begins with a two byte pointer to the next line
22 MR RESUME NOT ALLOWED ;ggﬁ followed by a two byte integer equivalent of the line
24 UE INVALID ERROR CODE
2% UL INVALID ERROR CODE 2005 number then the text of the BASIC statement. The body of
28 M0 OPERAND MISSING 26A2 the statement is terminated with a single byte of zeros
2A FD DATA ERROR ON CASSETTE 218C :
2 L3 DISK BASIC STATEMENT 1208 called the End Of Statement or EQS flag. The ending

ATTEMPTED UNDER LEVEL II

Level II External Tables

External tables used by Level II are those which are kept
in RAM. They are kept there because their contents and
size, as well as their address, may change. A pointer to
each of the External tables is maintained in the Communi-
cations Region.

Mode Table (4101-411A)
This table is used by the BASIC intrepreter to determine
the data type mode (integer, string, single or double
precision) for each variable. Although it never moves its
contents may change when a DEF declaration is
encountered, and therefore it must be in RAM. It is the
only RAM table with a fixed address and consequently
there is no pointer to it in the Communications Region.
The table is 26 decimal words long and is indexed by using
the first character of a variable name as an index. Each
entry in the table contains a code indicating the variable
type e.g. 02 - integer, 03 - string, 04 - single precision, 08 -
double precision.

The mode table is initialized during the IPL sequence to
04 for all variables. It appears as:

44

address of the PST is contained in 40F9. It is terminated
by two bytes of zeros.

Program Statement Table (PST)

40AL =->

2 Byte addr of
next statement

} 2 byte line number
in integer form

BASIC statement
in Tokenized
form

H kos Flag
2 byte addr of
next statement

} 2 byte line number
in integer form

BASIC statement
in Tokenized
form

EOS Flag

next statement

}_\ 2 byte addr of

Shown below are two statements and their representation
in the PST:

100 A=C¢0S (1.6)
110 IF A>.5 THEN 500

Section two contains all dimensioned arrays. These
(40A4) = 68C5 = —> D2 }Addrel- of .
53 next statement entries have the same three byte header followed by a
100 :; } Binary equivalent another header which defines the extents of the array. The
A al of line number array is stored after the second header in column-major
- 3D order.
COS Tokea El
(. .
1 BASIC Statement Variables are assigned space in the VLT as they are
6 encountered (in a DIM statement or in any part of an
s0s)) assignment statement). There is no alphabetical ordering.
$8D2 —me> gg } stacement terminator Beca_use space is assigned on demand it is possible for
68 previously defined variables to be moved down. For
OF example, if A, B, and C(5) were defined followed by D,
00 P d y
¥ 8F Token C(5) would be moved down because section one would be
‘)‘ ;15 Token increased for D. This would force section two to be
. 2E moved.
5 % (40F9) -=> Simple &
THEN cA Token String
2 32 Variables
0 30 Sl
0 (40FB) —> | Dimensioned
EOS W Variables
68E0 ———> .
L~ Arrays are stored in column-major order. In that order the

left most index varies the fastest. For example the array
A(2,3) would be stored in memory as:

Variable List Table (VLT)

A(0,0)
A(1,0)
A(2,0)
This table contains all variables assigned to a BASIC .
Empjam. Internally the table is divided into two sections,
ection one contains entries for all non-subscripted and .
string variables while section two contains the values for A(0,3)
all subscripted variables. Like the PST the VLT is RAM A(1,3)
resident and it has two pointers in the Communications A(2,3)
Region. Location 40F9 contains the address of the first X X
section, and 40FB contains the address of section two. An index for any element can be computed using the
The starting address of the VLT is considered as the end of formula:
the PST. INDEX = (((LRI*0)+URI)*LMI)+UMI)*LLL)+ULL
Regardless of which section a variable is defined in, the vhere LRI = limit of right index
first three bytes of each entry have the same format. Byte LML = limit of middle index
one has a type code (2,3,4,or 8), which doubles as the LLI = limit of left index
length of the entry. Bytes two and three contain the URL = user’s current right index
variable name in last/first character order. Following this VLT o boer e Current middle index
is the value itself in LSB/MSB order, or if it as a string .
variable a pointer to the string in the String Area. The code used to compute these indexes may be found at

address 2595 to 27C8.

Code/Lengen § 02 04 } Type/Lengen code 04 | Typa/Lengen code | os
Name 00 o Name (2nd char) 00 }n.- (Znd char)
4 AT = 100 (st char) [char) (lst char)
Value % 3 Offset to next 5 next | X]\ Ufiset to mexc
‘ 00 G Variable XX Vaciabie
7 } Nuaber of indexes 02 indexes | Musber ot indexes
Name Max value (/[of right ; lue of right
00 of index + 1 00 v i
Value . 05 of left }Nu value of middle
Lss B=1.0 . Type bytes tor A(D) 00 index + 1
s ~ Nax value ot left
nsp 00 -1 B Type bytes for a(0,0) } \ndex ¢ |
Exponent 8, -y- - - N
Code/lengtn { [. R LIS A . Type bytes tor A(G,0,0)
Name 0 . Type dytes tor A(20) 'l B e]
{ 4 Cs = “ABc” . - - b
String leagth {) 04 } Iype/Lengch code . Type bytes for A(4,5) b Tt B
Striog addr X 00 Name of rext array . |
in PST { s Y } [} typesLennen coue | ftrve vyes tor aeLn 10
. 00 Name ot next array | .
LY] } L [} } type/Lenstn code
Single Dimensioned Arrays : DIN A(20) . 00| | Neme of next acxay
Simple and String Variable Storage 41 }
Two Dizensicnal Array : DIM A(4,5)
Taree Dimensional Array : DIM A(8,9,10)

45

Literal String Pool (40D2)

This table is used by BASIC to keep track of intermediate
strings which result from operations such as string
addition or some print operations. The table has eleven
three byte entries which are assigned sequentially. The
start of the table has a two byte pointer to the next
available entry. It is initialized during IPL to point to the
head of the list.

Each entry contains the length and the address of a string
which is usually (although not necessarily) in the PST.
Entries are assigned in a top down fashion and released in
a bottom up manner. A pointer to the next available entry
is kept in40B3. If the table overflows an ST error s given.

(40B3) —> cC Address of next
3 available entry
FF } String length
00 } Addreps of
FF string

FFCC —> . ‘_\

Literal String Pool

Communications Region (4000 - 4200)

The Communications Region has been defined as RAM
locations 4000 to 4200. These addresses give the
definition an air of precision that is not warranted. In
reality only a portion of the area is used in the sense given
to the term Communications Region. Those boundaries
were chosen because they represent the end of ROM and
the approximate starting address of DOS in RAM. In a
Level II system without disk there would be no DOS and
the RAM tables such as the PST, VLT, etc. would begin
at a much lower address. But they would still be above
4200 so it is safe to think of that region as reserved.

The Communications Region has many uses other than
those mentioned so far. The following diagram shows the
major areas discussed up to this point. Following it is a
description of all bytes in the Communications Region
and their known use.

46

Communications Region

4000 -->
RST Vectors
4015 -->
DCB”s
4040 -->
Used By DOS
4080 -->
Division Support Routine
“OBE ==>
Used by
Level II
4101 —=>
Mode Table
411B -=>
Used by
Level II
4130 —=>
System Print Buffer
Lloa —->
Used by Level IL
4152 —=>
Disk BASIC
Vectors
41A3 -=>
DOS Exit
Vectors
41E5 ==>
4200 -=>
Address Level II Dos Description
Contents Coutents

4000 JP1C96
4003 JP 1D78
4006 JP 1C9%0

RST 8 VECTOR
RST 10 VECTOR
RST 18 VECTOR

4009 JP 25D9 .o RST 20 VECTOR
400C RET JP 4BA2 RST 28 DOS REQUEST PROCESSING
400F RET JP 44B4 LOAD DEBUG (LD A, XX/RST 28)

4012 DI/RET

CALL 4518 RST 38 INTERRUPT SERVICE CALL
4015 . .

« KEYBOARD DCB (8 BYTES)
401D VIDEO DCB (8 BYTES)

4025 «« PRINTER DCB (8 BYTES)
402D JP 5000 JP 4400 MAKE SYS1 (10) DOS REQUEST
4030 RST_ O LD A,A3 DOS REQUEST CODE FOR SYS1

w3 (1D A RST 28 WRITE “DOS READY® MSG
33 _44BB CALL DEVICE DRIVER ALA DOS
4036 .+ KEYBOARD WORK AREA USED
. BY SYSO AND KEYBOARD DRIVER
403D . DISPLAY CONTROL WORD (U/L CASE)
403E USED BY DOS
403F USED BY DOS
4040 SYSTEM BST’S
4041 SECONDS
4042 HINUTES
4043 HOURS
4044 YEAR
4045 . DAY
4046 . MONTH
4047 . LOAD ADDRESS FOR SYSTEM UTILITIES
2 BYTES, INITIALIZED TO 5200 BY
$YS0/SYS
4049 . MEMORY SIZE. COMPUTED BY SYSO/SYS
4044 . RESERVED
404B . CURRENT INTERRUPT STATUS WORD
404C . INTERRUPT SUBROUTINE MASK
404D . RESERVED (INTERRUPT BIT 0)
404F . RESERVED (INTERRUPT BIT 1)
4051 COMMUNICATIONS
INTERRUPT SUBROUTINE
4053 . RESERVED (INTERRUPT BIT 3)
4055 RESERVED (INTERRUPT BIT 4)
4057 RESERVED (INTERRUPT BIT 5)
4059 ADDR OF DISK INTERRUPT ROUTINE
4058 4560 ADDR OF CLOCK INTERRUPT ROUTINE
4050 ... STACK DURING IPL
407D . START OF STACK DURING ROM IPL
4O7E . RESERVED
407F . RESERVED
4080 . SUBTRACTION ROUTINE USED BY

DIVISION CODE. CODE 1S MOVED
FROM “18F7° = “1904° DURING
NON-DISK IPL OR BY BASIC
UTILITY FOR DISK SYSTEMS.

408E CONTAINS ADDRESS OF USER SUBROUTINE. LlIC .iieiens seeressananes TEMP STORAGE USED BY NUMERIC ROUTINES
4090 RANDOM NUMBER SEED WHEN UNPACKING A FLOATING POINT
4093 IN A,00 NUMBER. USUALLY IT HOLDS TME LAST
4096 ouT 4,00 BYTE SHIFTED OUT OF THE LSB POSITION
4099 HOLDS LAST CHAR TYPED AFTER BREAK 411D WRAl - LSB OF DBL PREC., VALUE
W09A FLAG (SIGNALS RESUME ENTERED) 411E WRAl - DBL PREC. VALUE
4093 NO. OF CHARS, IN CURRENT PRINT LINE 411F WRAL - DBL PREC VALUE
4090 OUTPUT DEVICE CODE (1-PRINTER 4120 WRAL - DBL PREC VALUE
0-VIDEO, MINUS 1-CASSETTE) 4121 WRAl - LSB OF INTEGER SINGLE PREC
409D SIZE OF DISPLAY LINE (VIDEO) 4122 WRAL
409E SIZE OF PRINT LINE 4123 WRAL - MSB FOR SINGLE PREC
409F RESERVED 4124 WRAL - EXPONENT FOR SINGLE PREC
40A0 ADDR OF STRING AREA BOUNDARY 4125 SIGK OF RESULT DURING MATH & ARITHMETIC
640A2 CURRENT LINE NUMBER OPEEATIONS
40M ADDR OF PST 4126 BIT BUCKET USED DURING DP ADDITION
40A6 CURSOR POSITION 127 WRAZ - LSB
4047 ADDR OF KEYBOARD BUFFR. 4128 WRA2
40A9 0 IF CASSETTE INPUT, ELSE NON-ZERO 4129 WRA2
40AA BANDOM NUMBER SEED 4124 WRA2
40A3 VALUE FROM REFRESH REGISTER 4228 WRA2
40AC LAST RANDOM NUMBER (2 BYTES) hl2C WRA2
40AE FLAG: 0 - LOCATE NAMED VARIABLE 4120 WRA2 - NSB
-1 = CREATE ENTRY FOR 412E WRA2 - EXPONENT
NAMED VARIABLE 4127 NOT USED
40AF <ceceeveveces TYPE FLAG FOR VALUE IN WRAL. 4130 START OF INTERNAL PRINT BUFFER
2 - INTEGER USED DURING PRINT PROCESSING
3 - STRING 4149 LAST BYTE OF PRINT BUFFER
4 - SINGLE PRECISION 4144 TEMP. STORAGE USED BY DBL PRECISION
8 DOUBLE PRECISION DIVISION ROUTINE. HOLDS DIVISOR
4080 HOLDS INTERMEDIATE VALUE DURING 4151 END OF TEMP AREA
EXPRESSION EVALUATION *
4081 MEMORY SIZE M
4082 RESERVED * LOCATIONS 4152 THRU 41E2 CONTAIN DOS EXITS AND DISK BASIC EXITS, ON NON-DI:
40R3 ADDR OF NEXT AVAILABLE LOC. IN LSPT, * SYSTEMS THESE LOCATIONS ARE INITIALIZED TO RETURNS (RET’S) WHILE ON DISK
4085 LSPT (LITERAL STRING POOL TABLE) * BASED SYSTEMS THEY WILL BE INITIALIZED AS SHOWN,
4002 END OF LSPT *
4003 THE NEXT 3 BYTES ARE USED TO HOLD *
THE LENGTH AND ADDR OF A STRING WHEN 4152 Jp DISK BASIC EXIT (CVI)
IT IS MOVED TO THE STRING AREA. 4155 3P DISK BASIC EXIT (FN)
4D6 ..ieceseceee. POINTER TO NEXT AVAILABLE 4158 2 JP DISK BASIC EXIT (CVS)
LOC. IN STRING AREA. 4158 »JP DISK BASIC EXIT (DEF)
40D8 .c.cieieneee. 1: INDEX OF LAST BYTE EXECUTED IN 413E -JP DISK BASIC EXIT (CVD)
CURRENT STATEMENT. 4lel .JP DISK BASIC EXIT (EOF)
2: EDIT FLAG DURING PRINT USING 4164 .JP DISK BASIC EXIT (LOC)
40DA 4uesesssseses LINE NO. OF LAST DATA STATEMENT READ 4167 .JP DISK BASIC EXIT (LOF)
400C FOR FLAG (1 = FOR IN PRGORESS 416A .JP DISK BASIC EXIT (MKIS)
0 = NO FOR IN PROGRESS) 416D .JP DISK BASIC EXIT (MKSS)
40DD 0 DURING INPUT PHASE, ZERO OTHERWISE 4170 .JP DISK BASIC EXIT (MKD$)
40DE READ FLAG: O = READ STATEMENT ACTIVE 4173 .JP DISK BASIC EXIT (CMD)
1 = INPUT STATEMENT ACTIVE 4176 -JP DISK BASIC EXIT (TIMES)
ALSO USED IN PRINT USING TO HOLD wl79 JP DISK BASIC EXIT (OPEN)
SEPERATOR BETWEEN STRING AND VARLABLE 4l1¢c JP DISK BASIC EXIT (FIELD)
40oF sesesssasssse HOLDS EXECUTION ADDR FOR PCM LOADED 417F «JP DISK BASIC EXIT (GET)
WITE DOS REQUEST 4182 «JP DISK BASIC EXIT (PUT)
401 AUTO INCRREMENT FLAG 0 = NO AUTO MODE 4185 P DISK BASIC EXIT (CLOSE)
NON-ZERO HOLDS NEXT LINE NUMBER 4188 «JP DISK BASIC EXIT (LOAD)
WE2 iiiiiiienannen CURRENT LINE NUMBER IN BINARY 4188 .JP DISK BASIC EXIT (MERGE)
(DURING INPUT PHASE) 418E JJB DISK BASIC EXIT (NAME)
0B AUTO LINE INCREMENT 4191 .JP DISK BASIC EXIT (KILL)
DURING INPUT: ADDR OF CODE STRING 194 -3 DISK BASIC EXIT (&)
FOR CURRENT STATEMENT. 4197 DISK BASIC EXIT (LSET)
DURING EXECUTION: LINE NO. POR CURRENT 4194 DISK BASIC EXIT (RSET)
STATEMENT 419D DISK BASIC EXIT (INSTR)
B8 DURING EXECUTION: HOLDS STACK POINTER 41a0 DISK BASIC EXIT (SAVE)
VALUE WHEN STATEMENT EXECUTION BEGINS 4l1A3 DISK BASIC EXIT (LINE)
4ORA LINE NO. IN WHICH ERROR OCCURED 4146 5679..... DISK BASIC EXIT (USR)
40EC LINE NO. IN WHICH ERROR OCCURED. *
40ED LAST BYTE EXECUTED IN CURRENT STATDMENT *
4O0RF ADDR OF POSITION IN ERROR LINE * THE FOLLOWING ADDRESSES ARE THE DOS EXIT ADDRESSES.
4070 ON ERROR ADDRESS M
“0r2 FLAG, FF DURING ON ERROR PROCESSING *
CLEARED BY RESUME ROUTINE 4l1A9 ...RET. .JP DOS EXIT FROM
4073 ADDR OF DECIMAL POINT IN PB 4lac JP DOS EXIT FROM
LAST LINE NUMBER EXECUTED 41AF JJP DOS EXIT FROM
SAVED BY STOP/END 4182 «JP DOS EXIT FROM
ADDR OF LAST BYTE EXECUTED DURING 4185 -JP DOS EXIT FROM
ERROR 4138 .JP DOS EXIT FROM
ADDR OF SIMPLE VARIABLES 4188 JP DO§ EXIT FROM
ADDR OF DIMENSIONED VARIABLES 413E -JP DOS EXIT FROM
STARTING ADDRESS OF FREE SPACE LIST (FsL) 41C1 -JP DOS EXIT FROM
POINTS TO BYTE FOLLOWING LAST CHAR alce «JB DOS EXIT FROM
READ DURING READ STMNT EXECUTION sicr »JP DOS EXIT FROM
VARIABLE DECLARATION LIST, THERE 41ca 3P DOS EXIT FROM
ARE 26 ENTRIES (1 FOR EACH LETTER 4ico -JP DOS EXIT FROM
OF THE ALPHABET) EACH ENTRY CONTAINS 4100 -JP DOS EXIT FROM
A CODE INDICATING DEFAULT MODE FOR 41D3 «JP DOS EXIT FROM
VARIABLES STARTING WITH THAT LETTER. 41D6 3P DOS EXIT FROM
4lla END OF DECLARATION LIST 41pC .JP DOS EXIT FROM
4lls TRACE FLAG (0 = NO TRACE, 41DF JP DOS EXIT FROM
NON-ZERO = TRACE) 41p2 JJP 5B51..... DOS EXIT FROM

NeusrwNn~oO

“wourwN=O

~ouwsrwNnrO

DCB Descriptions

The keyboard, video, and printer DCB’S (Device Control
Blocks) are defined in ROM at locations@@EQ2 06E7 -
06FF. They are moved to the address show in the
Communications Region during the IPL sequence.

Video DCB (Address 401D)

Relative Byte

1 ! Device type (7)

Driver address

(0458)

Next character address

3C00 =< X < 3FFF
0/value 0 = Supress cursor
value = last char under cursor
RAM buffer addr (4F44)

Keyboard DCB (Address 4015)

Relative Byte

Device type (1)
Driver address
(03E3)

I Not Used

address (494B)

| RAM buffer

Printer DCB (Address 4025)

Relative Byte

Device type (6)
Driver address
(058D)

Lines/page (43H = 67)

Lines printed so far

Not Used
RAM buffer
address (5250)

Interrupt Vectors

Interrupts are a means of allowing an external event to
interrupt the CPU and redirect it to execute some specific
portion of code. The signal that causes this to happen is
called an interrupt and the code executed in response to
that interrupt is called a service routine. After the service
routine executes it returns control of the CPU to the point
where the interrupt occurred and normal processing
continues.

48

In order for interrupts to occur the system must be primed
to accecpt them. When the system is primed it is
ENABLED which is shorthand for the instruction used to
enable the interrupt system (EI-Enable Interrupts). A
system that is not enabled is DISABLED and again that is
shorthand for the disable instruction (DI-Disable
Interrupts). Besides priming the system for interrupts
there must be some outside event to stimulate the
interrupt. On Level II systems that could be a clock or a
disk. Actually both of them generate interrupts - the clock
gives one every 25 milliseconds, and the disk on demand
for certain operations.

When running a Level II system without disks the
interrupts are disabled. It is only when DOS is loaded that
interrupts are enabled and service routines to support
those interrupts are loaded. Interrupts are disabled at the
start of the IPL sequence that is common to Level II and
DOS. For Level II they will remain off, but on a DOS
system they will be enabled at the end of the initilization in
SYS0/SYS.

When an interrupt occurs two things happen. First a bit
indicating the exact cause of the interrupt is set in byte
37EO. Second an RST 56H instruction is executed. As a
result of the RST (whichis like a CALL) the address of the

next instruction to be executed is saved on the stack
(PUSH'd) and control is passed to location 0038. Stored

at00 38 is a JP 4012. During the IPL sequence 4012 was
initialized to:

4012 DI
4013

Disable further interupts
RET Return to point of interupt

for non-disk systems or:

4012 CALL 4518 Service Interupt

for disk systems

The service routine at 4518 examines the contents of
37E0 and executes a subroutine for each bit that is turned
on and for which DOS has a subroutine. The format of the
interupt status word at 37EO is:

7 6 5 4 3 2 1 0

ORDEEEREE

<= Bits

-—E— Not used
| e Communications Interupt
Not used

l Disk Controller Interupt
Clock Interupt

X

Floppy Disk
Controller

Peripheral s~

Line Priater
(Parailel Port)

Keyboard Video
~ I 1 H
wemory H E
Napped l vee B3 l E8 l 37e1 m 3760 e [3801 - 3877 l H l 3c00 - 3FPY
Addresses a .
- »]
] H ©
Port ~ 2 | - — N v "
Addcesses 3l = RE N s ” -
3 ~ M
2 L . NEEIHE a 3
3 3 AEIEHEE :
] s] H &4 %
i ~ B i i o
Softvare = P HE M
Addresses 2 <1 31 31 2] S
2 al 3) 2| g} 3
Cassetce - NN E
Driver v Keyboard Video
0ID9 - OZAS DOS Driver Driver
Disk Driver 03E3 - 0457 0458 - 058C
4671 - 460C

Printer
river

D
058D - 0508

Memory Mapped 1/0

DOS maintains an interrupt service mask at 404C that it
uses to decide if there is a subroutine to be executed for
each of the interrupt status. As released 404C contains a
CO0 which indicates subroutines for clock and disk
interrupts.

The service routine at 4518 combines the status byte and
the mask byte by AND’ing them together. The result is
used as a bit index into a table of subroutine addresses
stored at 404D - 405C. Each entry is a two byte address of
an interrupt subroutine. Bit O of the index corresponds to
the addess at 404D/404E, bit 1 404F/4050, etc.

The service routine runs disabled. It scans the interrupt
status from left to right jumping to a subroutine whenever a
bit is found on. All registers are saved before subroutine
entry and a return address in the service routine is
PUSH’d onto the stack so a RET instruction can be used
to exit the subroutine. When all bits in the status have been
tested control returns to the point of interrupt with
interrupts enabled.

Stack Frame Configurations

Level II usually uses the Communications Region for
temporary storage. There are special cases, however
where that is not possible because a routine may call itself
(called recursion) and each call would destroy the values
saved by the previous call. In those cases the stack is used
to save some of the variables. Of course an indexed table
could be used, but in these cases the stack serves the
purpose.

FOR Statement Stack Frame

All variable addresses associated with a FOR loop are
carried on the stack until the loop completes. When a
NEXT statement is processed, it searches the stack
looking for a FOR frame with the same index address as
the current one. The routine that searches the stack is at
location 1936. Its only parameter is the address of the
current index which is passed in the DE register set. The
stack is searched backwards from its current position to
the beginning of the stack. If a FOR frame with a matching
index address is not found an NF error is generated. The
stack frame searched for is given below.

Low Memory FOR Token
Addr of FOR Index
LSB / MSB order
Sign of increment
Type (-1 Integer, +1 SP)

STEP value
LSB / MSB order

TO value
LSB / MSB order

Bioary line # of

FOR statement
Address of lst loop
statement

FOR Token

High Memory

49

GOSUB Stack Configuration

Low MEmory fuusseeevecssannsonsnance I Return address
in Execution Driver
GOSUB Token
........................ l Binary value of
GOSUB line #

High Memory

Expression Evaluation

Expression evaluation involves scanning an expression
and breaking it inté seperate operations which can be
executed in their proper order according to the hier-
archary of operators. This means a statement must be
scanned and the operations with the highest heiracherial
value (called precedence value) must be performed first.
Any new terms which result from those operations must
be carried forward and combined with the rest of the
expression.

The method used for evaluation is an operator precedence
parse. An expression is scanned from left to right.
Scanning stops as soon as an operator token or EOS is
found. The variable to the left of the operator (called the
current variable), and the operator (any arithmetic token
for - * / or exp) are called a ’set’, and are either:

a) pushed onto the stack as a set or,

b) if a precedence break is detected the operation between
the previous set pushed onto the stack and the current
variable is performed. The result of that operation then
becomes the current variable and the previous set is
removed from the stack. After the computation another
attempt is made to push the new current variable and
operator onto the stack as a set.

This step is repeated until the new set is pushed or there
are no more sets on the stack with which to combine the
current value. In that case the expression has been
evaluated.

The variable/operator sets that are pushed on the stack
have the following format:

Precedence value for —>
operator value in prior
set, zero tor lst

Continuation addr after —->
precedence bresk
computation, Usually

2346

<== Value for this
variable

Type code (length) -—>

<== Token for op
tor this variable

atter this
0+, Lo, 2%,
3=/, =], S=anD
Address of precedence --> 6=0R
computation routine.
2406 for +, -, * and /

The test for precedence break is simple. If the operator
(the token where the scan stopped) has the same or alower
precedence value as the precedence value for the last set
pushed on the stack then a break has occured, and an
intermediate computation is required. The computation is

50

Address of GOSUB line
in PST (current position)

performed automatically by POPing the last set. When
this occurs control is transfered to a routine (usually at
2406) which will perform the operation specified in the
set between that value (the one from the set on the stack),
and the current variable. The result then becomes the
current variable. When the computation is finished con-
trol returns to a point where the precedence break test is
repeated. This time the set which caused the last break is
not there, so the test will be between the same operator ag
before and the operator in the previous set. If there is no
previous set then the current variable and operator are
pushed as the next set. Note, an EOS or a non-arithmetic
token are treated as precedence breaks.

Assuming no break occurs the curent variable and oper-
ator are pushed on the stack as the next set, and the scan of
the expession continues from the point where it left off.
Let’s take an example. Assume we have the expression,

AequalsBplusC*D/E §

Scanning begins with the first character to the right of the
equals sign and will stop at the first token (plus). B plus
would be pushed as the first set because: a) there was no
prior set so there could not have been a precedence break,
and b) the scan stopped on an arithmetic token (plus).

The next scan would stop at the *. Again the variable/
operator pair of C* would be pushed this time as set 2
although for slightly different reasons than before. The *
precedence value is higher than the plus precedence value
already pushed so there is no break. At this time the stack
contains,

Set 2
00
2346
B value
o4 | 00 | roxen for +
atter B
2406
Set 1
Precedence value | 79
for + in Set 1
2346
C value
o | 0z] roken cor «
aiter C
2406

Scan three would stop on the / following D. This time
there would be a precedence break because * and / have
the same values. Consequently set 2 would be POP’d
from the stack and control passes to the precedence break
routine at 2406 (other routines may be used depending on
the operation to be peformed - ckeck the listing for details).
Here the operation between set 2 (C*) and the current
value (D) would be performed. This would result in a new
curreat value that will be called M. M equals C * D

After the multiplication control goes back to 2346 (con-
tinuation after break processing) where the rules from
above are used. This time the current value is pushed as
set 2 because it has a higher precedence value (/) than that

in set 1 (plus). Now the stack contains

00 Precedence value | 79
for + in set 1 |—-F_>
2346 2346
B value C * D value
Token for + Token for /
after B after C * D
Set 1 Set 2

After pushing set 2 the scan continues, stopping at the
operator. It has a higher precedence value than the (/) in
set 2 so a third set is added to the stack giving:

Precedence value | 7C
for / in Set 2

2346
Set 1 E value
04 Im Token for [/
wmeedecool after E
— 2406
Set 2

The next scan is made and an EOS is found following the 5
(which is now the current value). As mentioned earlier an
EOS or non-arithmetic token is an automatic precedence
break, so set 3 is POP'd from the stack and E § is
computed and becomes the current value. Control passes
t02346 where the rules for pushing the next set are applied
and set 2 get's POP’d because the current operator is an
EOS. Set 2 (M/) and th current value are operated on
giving a current value of

M/ES5 or
C*D/ES

Again control goes to 2346 which forces set 1 to be POP’d
because the current operator is an EOS. When the set is
POP’d control goes to the computation routine where the
current value and set 1 are operated on. This yields a
current value of

BplusC*D/ES

Now control goes to 2346 and this time the stack is empty
causing control to be returned to the caller. The
expression has been evaluated and its value is left in

WRAL.

DOS Request Codes

DOS request codes provide a mechanism for executing
system level commands from within a program. The way
they work is to cause the DOS overlay module
SYSX/SYS associated with the request to be loaded into
4200 - 5200 and executed. When the request has been
satisfied control is returned to the caller as though a
subroutine call had been made.

DOS functions may be executed by loading a DOS
request code into the a register and executing a RST 28
instruction. Because of the way DOS processes these
request codes the push on the stack that resulted from the
RST instruction is lost, and control will be returned to the
next address found on the stack - rather than to the address
following the RST instruction. For example,

LD A,VAL LOAD DOS FUNTION CODE
RST 28 EXECUTE DOS FUNCTION
. THIS IS WHERE WE WANT TO RETURN
TO

. BUT WILL NOT BECAUSE OF THE WAY
THE STACK IS MANAGED BY DOS

This will not work because the return address (stored on
the stack by the RST 28) has been lost during processing.
Instead the following sequence should be used:

LD A,VAL LOAD REQUEST CODE
CALL DosS PUT RETURN ADDR ON STACK
DOs RST 28 EXECUTE DOS FUNCTION

ALL REGISTERS ARE PRESERVED
WE WILL AUTOMATICALLY RET TO
CALLER OF DOS

The request code value loaded into the A-register must
contain the sector number minus 2 of the directory sectory
for the overlay to be loaded and a code specifying the
exact operation to be performed. The format of the request
code is:

76 5 4 3 2 i 0 <— Bt

Sector number -2, of
ory eatry tor DOS

sle to be loaded
Must be & 1, othervise
request will de 1znored

As it is presently implemented the file pointed to by the
first entry in the specified directory sector will be loaded.
There is no way for example, to load the file associated
with the 3rd or 4th entry. A list of the system overlay
modules and their functions follows. These descriptions
are incomplete. See the individual modules for a complete
description.

MODULE DIRECTORY SECTOR REQUEST SUA-FUNCTIONS
MINUS 2 CODE

sYs1 1 3 10 -

0 50 -
3 50
¥ 70 - reserved
sYs2 2 4 10 - GPEN tile processing
A4 20 - IKIT
34 0 -
4)
>4 50 teserved
o 50 -
e i
is3 3 s 10
A5 v
) 30
s 4“0
038 50 -
33 60 ~ load SYSI/SYS
¥ 0 - tormat diskette

Y853

51

Chapter 5

A BASIC SORT Verb

Contained in this chapter is a sample assembly program
that demonstrates the use of the ROM calls and tables
described in the previous chapters. In this example DOS
Exits and Disk BASIC Exits are usedto add a SORT verb
to BASIC.

In this case a SORT verb will be added so that the
statement

100 SORT 18, 08, KI1$

be used to read and sort a file specified by the string I$. O$
and K 183 are strings which specify the output file name and
the sort key descriptors. The procedure for doing this is
simple. First we must modify the Input Phase to recognize
the word SORT and replace it with a token. This can be
accomplished by using one of the DOS Exits.

A DOS Exit is taken during the Input Phase immediately
after the scan for reserved words. We will intercept this
exit to make a furthur test for the word SORT and replace
it with a token. Processing will then continue as before.
Before using any DOS Exit study the surrounding code to
determine exact register usage. In this case it is important
to note that the length of the incoming line is in the BC
register when the exit is taken. If the subroutine
compresses the line (by replacing the word SORT with a
token) then its length will have changed and the new length
must replace the orginal contents of BC.

A second modification must be made to the Execution
Driver, or somewhere in its chain, to recognize the new
token value and branch to the SORT action routine. This
presents a slight problem because there are no DOS Exits
in the execution driver before calling the verb routine, and
since the driver code and its tables are in ROM they
cannot be changed. In short there is no easy way to
incorporate new tokens into the Execution Phase.

52

The solution is to borrow a Disk BASIC token and piggy-
back another token behind it. Then any calls to the verb
routine associated with the borrowed token must be
intercepted and a test make for the piggy-backed token. If
one is found control goes to the SORT verb routine
otherwise it passes to the assigned verb routine. In this
example the tokenq FA will be borrowed and another FA
will be tacked behind it giving a token FAFA.

This example is incomplete because the LIST function
has not been modified to recognize the sort token. If a
LIST command is issued the verb MIDSMIDS$ will be
given for the SORT verb. There is one more detail that
needs attention before discussing the verb routine. Usiny
the memory layout figure in Chapter 1 we can see that
there is no obvious place to load an assembly language
program without interfering somehow with one of
BASIC’s areas. Depending on where we loaded our verb
routine it could overlay the String Area, or the Stack, or
maybe evenreach as low as the PST or VLT. Of course we
might get lucky and’find an area in the middle of the Free
Space List that never gets used but thats too risky.

BASIC has a facility for setting the upper limit of the
memory space it will use. By using this feature we can
reserve a region in high memory where our verb routine
can be loaded without disturbing any of BASIC's tables.
Now for the details of verb routine.

Because.g sort can be a lengthy piece of code only the
details that pertain to DOS Exits, Disk BASIC, and some
of the ROM calls from Chapter 2 will be illustrated. The
verb routine has two sections. The first section will be
called once to modify the DOS and Disk BASIC exit
addresses (also called vectors) in the Communications
Region to point to locations within the verb routine. The
vector addresses must be modified after BASIC has been
entered on a DOS system because they are initialized by
the BASIC command. The second section has two parts.

part one is the DOS Exit code called from the Input
Scanner. Part two is the verb action routine for the SORT
verb. It is entered when a FA token is encountered during
the Execution Phase.

The system being used will be assumed to have 48K of
RAM, at least 1 disk, and NEWDOS 2.1. The verb
routine will occupy locations EQ00 - FFFF. The entry
point for initializing the vectors will be at qt22E000. All
buffers used will be assigned dynamically in the stack
portion of the Free Space List. The verb routine will be
loadd before exiting DOS and entering Level I BASIC.
Although it could be loaded from the BASIC program by
using the CMD’LOAD....." feature of NEWDOS.

1. IPL
2. LOAD,SORT :(load verd into E000 - FFFF 1)
3. BASIC,57344 :(protect verb area)

100 DEF USRI(0) = SHEOOO : initislization emtry point

110 A = USR1(0) : initialize vectors

N : initialize the sort

100 I$="SORTIN/PAY:1" H (lo(\inpu: file)

110 0$="SORTOUT/PAY:1" : (sort output file)

120 K$="A,A,100-120" : (sort key: ascending order ASCII
: key, sort field is 100 - 120)

130 SORT 1§, 0S,KS : (sort file)

RUN

00100 ORG 0EO0OH

00110 ; INITIAL ENTRY POINT TO INITIALIZE DOS EXIT AND
00120 ; DISK BASIC ADDRESSES.

LD HL, (61B3H) i ORGINAL DOS EXIT VALUE
Lo (ADR1+1) ,HL i 15 STILL USED AFTER OUR
i PROCESSING
LD HL, (41DAK) ; ORGINAL DISK BASIC ADDR FOR
; MIDS TOKEN (FA)
LD (ADR2+1) HL i SAVE IN CASE FA TOKEN FOUND
LD HL, NDX
LD (41B3H) ,HL
LD HL, NDB
; OUR ADDR
LD (41DAH) ,HL

3 FA TOKEN W/OUR ADDR
RET 3 RET TO EXECUTION DRIVER
GET ADDRESS OF VARIABLE
THIS SECTION OF CODE IS ENTERED AS A DOS EXIT DURING THE
INPUT PHASE. IT WILL TEST FOR A “SORT” COMMAND AND REPLACE
IT WITH A “FAFA” TOKEN. THE ORGINAL DOS EXIT ADDR HAS BEEN
SAVED AND WILL BE TAKEN AT ADRI.

CALL SAV i SAV ALL REGISTERS

LD 1X,SORT-1 ; TEST STRING
LD 8,3 ; NO. OF CHARS TO MATCH

NDX1 INC HL i START OF LOOP
INC X ; BUMP TO NEXT TEST CHAR
LD A,(1X+0) i GET A TEST CHAR
cp (HL) ; COMPARE W/INPUT STRING
IR NZ,0UT ; STOP WHEN FIRST MIS-MATCH

ALL & CHARS MUST MATCH

WE HAVE A MATCH. NOW REPLACE THE WORD “SORT® WITH A TOKEN
“FAFA® AND COMPRESS THE STRING

INC HL ; FIRST CHAR AFTER “SORT”
PUSH HL SAVE FOR COMPRESSION CODE

LD BC,-3 ; BACKSPACE INPUT STRING
ADD HL,BC i START OF WORD “SORT”

LD (HL) ,0FAH i TOKEN REPLACES “S°

INC HL i NEXT LOC IN INPUT STRING
LD (HL) ,0FAH i TOKEN REPLACES ‘0

INC HL » NEXT LOC IN INPUT STRING
POP DE 3 STRING ADDR AFTER SORT

40340
00550
00560
00570
00580
00590
00600
00610
00620
0630
00640
00650
00660
00670

00680 ;

00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
007%
00800
00810

00820 ;

00830
00840
00850
00860
00870
00880
00890

00900 ;

00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
Q1010
01020
01030
01040
01050
01060
01070
01080
01090
01100
ol110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450

EX

DE,HL

»* NOW CUMPRESS THE INPUT STRING

ox

..
NDX2
-

-
NDBI

LD

RST

Lo
INC
INC
OR
JR
1D

1NC
LD
INC
INC
INC
LD
CALL
LD
R
CALL
JP

BC,3
ion
(DE) ,A
DE

c

A
NZ,NDX2
(DE) ,A

DE
(DE) ,A
c

c

c

(TEXP) ,BC
RES

BC, (TEMP)
ADRL

RES
0

BASIC EXIT FOR FA TOKEN.

CALL
INC

WE HAVE A

SAV

HL

A,(HL)
OFAH

zZ,NDBL

RES

0

SORT TOKEN

HL
GADR

(PARM3) ,DE
(TEMP) ,HL

BLANK FILL I/0 DCBS

EEEEEEE

INC
DJNZ
INC
INC
DEC
Jr

1X,DCBL
c,2
A,20H
L,(I1X+0)
H,(1X+1)

SO WE CAN USE RST 10
TO FETCH NEXT CHAR

SET COUNT OF CHARS IN
EQUAL TO NO SKIPPED OVER
GET NEXT CHAR, DISCARD
BLANKS

MOVE IT DOWN

BUMP SOURCE ADDR

COUNT | CHAR IN LINE
TEST FOR END OF STRING
NOT END, LOOP

EACH LINE MUST END WITH
3 BYTES OF ZEROS

BUMP TO LAST BYTE
STORE 3 RD ZERO

THEN SET 3C = LENGTH OF
LINE + 1

SO BASIC CAN MOVE IT
SAVE NEV LINE LENGTH
RESTORE REGISTERS

NEW LINE LENGTH TO BC
EXIT

RESTORE REGISTERS
CONTINUE ON TO ORGINAL
DOS EXIT

TEST FOR SORT TOKEN FAFA

SAVE ALL REGISTERS

SKIP TO CHAR AFTER TOKEN
TEST FOR SECOND “FA®

IS FOLLOWING CHAR A FA

Z IF SORT TOKEN

RESTORE REGISTERS

CONTINUE WITH MIDS PROCESSI!

SKIP OVER REST OF TOKEN
GET ADDR OF LST PARAM

SAV ADDR OF INPUT FILE NAME
LOOK FOR COMMA

SYMBOL TO LOCK FOR

GET ADDR OF 2ND PARAM

SAV ADDR OF OUTPUT FILE NAM
LOOK FOR COMMA

SYMBOL TO LOOK FOR

GET ADDR OF SORT KEYS

SAV ADDR OF SORT KEY

SAVE ENDING POSITION

IN CURRENT STATEMENT

3 LIST OF DCB ADDRS

NO OF DCBS TO BLALNK
ASCIT BLANK

LSB OF DCB ADDR

MSB OF DCB ADDR

NO OF BYTES TO BLANK
BLANK LOOP

LOOP TILL BLANKED
BUMP TO NXT DCB ADDR
BUMP AGAIN

ALL DCBS BLNKD

NO

3 YES, MOVE FILE NAMES TO DCB AREAS
»

YAl

LD
LD
CALL
LD
LD
CALL
L
INC
LD
INC
LD
LD
CALL
JR
Jp
LD
INC
RST
DEMM
CALL
JR

HL, (PARM1)
DE,DCBI
29c8d

HL, (PARM2)
DE,DCBO
29C8H

HL, (PARM3)

ERROR

NC,YAS

ADDR OF INPUT FILE NAME STH
INPUT DCB

MOVE NAME TO DCB

ADDR OF OUTPUT FILE NAME
OUTPUT DCB

MOVE NAME TO DCB

GET ADDR OF KEY STRING
SKIP OVER BYTE COUNT
GET LSB OF STRNG ADDR
BUMP TO REST OF ADDR
GET MSB OF STRNG ADDR
NOW HL = STRNG ADDR
MUST BE ALPHA

0K

INCORRECT SORT ORDER
SAVE SORT ORDER (A/D)
SKIP TO TERMINAL CHAR
TEST FOR COMMA

MUST BE ALPHA
oK

53

1950 euP A

145 (FL),A 31959 0P AF
di B ¢l1970 PoP BC
8 01980 EX (SP) ,HL ; RTN ADDR TO STK
0199 EX DE, HL
OEECH ; GET RECORD SIZE $2000 RET
DE, (&1 21H) i GET SIZE FROM WRAL 02010 JP (4L) i RIN TO CALLER
(SIZE),DE i SAVE IT 02020 ;
20H MUST BE AN INTEGER 02030 GET THE ADDRESS OF THE NEXT VARIABLE INTO DE
M,YALD ; MINUS IF INTEGER 02040
ERRCR 02050 LD A, (HL) ; GET NEXT CHAR FROM Lypp
YALO 08 ; LOOK FOR COMMA 02060 ; STRNG, TST FOR LITERAL
02070 cP 224 ; 1S IT A QUOTE -START g
QE&CH , GET STARTING POSITION 02080 ;* i A LITERAL-
DE, (41 21H) ; GET POS FROM WRAL 02090 IR NZ,GADR2 ; NO, GO FIND ADDR OF vi
(START),DE i SAVE IT 02100 CALL 2B66H i YES, GO BUILD A LSPT gy
08 i LOOK FOR - c2110 JR GADRS ; THEN JOIN COMMON CODE
- ; CHAR TO TEST FOR 02120 GADR2 CALL 2540H i GET ADDR OF NEXT VARIn
OE6CH i GET ENDING POS OF KEY 02130 GADRS RST 200 ; IS IT A STRING
DE, (4121 i GET VALUE FROM WRAL 02140 LD DE, (4121H) ; ADDR OF NEXT VAR
(END) ,DE ; SAVE ENDING POS 02150 RET z i+ RET IF STRING VAR
HL, (TEMP) ; RESTORE CURRENT LINE ADDR 02160 POP HL ; CLEAR STACK
W i TO EOS ON RETURN 02170 [HL CLEAR STACK
CALL RES ; RESTORE REGISTERS 02180 LD A2 ERROR CODE FOR SYNTAX {
LD HL, (TEMP) i RESTORE EOS ADDR 02190 I 19971 ; GO TO ERROR ROUTINE
RET i RETURN TO BASIC 02200 ;
i 02210 ERROR EXIT
* 02220 ;*
i 02230 ERROR CALL RES ; RESTORE RECISTERS
SORT ~ DEFM s’ ; S OF SORT 02240 POP HL CLEAR STACK
DEFB OD3H ; TOKEN FOR OR OF SORT 02250 LD A2 SYNTAX ERROR CODE
DEFH T° ; T OF SORT 02260 JP 1997H ; PRINT ERROR MESSAGE
" 02270 ;*
i* SAVE ALL REGISTERS 02280 ;*
i* 02290 ;*
SAV EX DE,HL 02300 DCBL DEFW DCBL
EX (SP),HL ; SAV DE/RTN ADDR TO HL 02310 DEFW DCBO
PUSH BC 02320 PARMI DEFW 0 ; INPUT FILE NAME STRING
PUSH AF 02330 PARM2 DEFW 0 ; OUTPUT FILE NAME STRIN
PUSH X 02340 PARM} DEFW 0 ; KEY STRING ADDR
PUSH DE i SAV ORGINAL HL 02350 TYPE DEFB 0 i RECORD TYPE (A/B/C)
EX DE,HL ; RESTORE HL RET ADDR TO DE 02360 ORDER DEFB 0 ; SORT ORDER (A/D)
PUSH DE ; RET ADDR TO STK 02370 SIZE DEFW 0 3 RECORD SIZE
RET i RET TO CALLER 02380 START DEFW 0O ; STARTING POSITION OF X
i* 02390 END DEFW 0 , ENDING POSITION OF KEY
i* RESTORE ALL REGISTERS 02400 TEMP DEFW 0 i HOLDS EOS ADDR
i* 2410 DCBI DEFS 32 i INPUT DCB
01930 RES POP HL ; RTN ADDR TO HL 02420 DCBO DEFS 32 , OUTPUT DCB
01940 POP DE ; REAL HL 02430 END

LD (HL),B
INC HL
LD

INC\

. be) :
a0 ON 7 INC =z
330 «¥ DJNZ 0096H
LD B15H

LD (HL),0C9H

54

Chapter 6

BASIC Overlay Routine

This example shows how the tables in the Communi-
cations Region can be manipulated so that a BASIC
program can load and execute overlays. The overlay
program will add statements to an executing BASIC
program while preserving all the current variables. The
calling sequence to be used is:

: Address of of overlay program

100 DEF USR1=8HE000
. : Main body of application program

300 F$="FILEl/BAS"

: File containing overlay
310 z=USR1(500)

: Replace lines 500 thru the end
: of the program with the
: statement from FILEL/BAS.)

320 GOSUB 500 : Execute the overlay

500 REM START OF OVERLAY AREA

The operating assumptions for this example will be the
same as those in chapter 5. Note, overlay files containing
the ASCII file must have been saved in the A mode.

The program itself will be considerably different, how-
ever. For instance, there will be no use of DOS
Exits. This means that the CR will not need modifica-tion
so there will be no need for an initial entry point. One
parameter will be passed in the calling sequence while the
other one will have an agreed name so that it can be
located in the VLT.

When a BASIC program is executing there are three
major tables that it uses. First is the PST where the
BASIC statements to be executed have been stored.
Second is the VLT where the variables assigned to the
program are stored, and the third table is the FSL which
represents available memory. All of these tables occur in
the order mentioned. The problem we need to overcome in
order to support overlays is to find a way to change the first
table while maintaining the contents of the second one. A
diagram of memory showing the tables follows.

Level II
ROM

Communications
Region

DOS Nucleus

Disk BASIC

nodified

VLT <=—=- th1is table needs to
remain intact

String Area
Overlay
Program

end of memory -—-->

Fortunately this can be accomplished quite easily. By
moving the VLT to the high end of FSL we can seperate it
from the PST. Then the overlay statements can be read
from disk and added to the PST. Obviously the PST
would either grow or shrink during this step unless the
overlay being loaded was exactly the same size as the one
before it. After the overlay statements have been added
the VLT is moved back so it is adjacent to the PST. Then
the pointers to the tables moved are updated and control is
returned to the BASIC Execution Driver

The overlay loader used in this example assumes that the

file containing the overlay statements is in ASCII format.

This means that each incoming line must be tokenized

before being moved to the PST. To speed up processing

the loader could be modified to accept tokenized files.
—

There is no limit to the number of overlays that can be
loaded. The program will exit with an error if a line
number less than the starting number is detected. The
loader does not test for a higher level overlay destroy-inga
lower one, this would be disasterous - as the return path
would be destroyed.

A sample program to load three seperate overlays is given
as an example.

55

PST <---- this table needs to be

100 A = 1.2345
110 3 = 1
120 IF 8 = L THEN F$ = "FILEL"
130 1IF B = 2 THEN F$ = “FILE2"
140 IF B = 3 THEN F$ = "FILEI"
150 z = USR1(500)
160 COswB 500
170 B=B + 1
180 LF B > 3 THEN 10
190 GoTO 120
500 PRINT"OVERLAY #1 ENTERED"
510 PRINT A
520 C = 25
530 D = 30
540 E = C+D+A Contents
550 PRINT"C = "; of File 1
560 PRINT"D =
570 PRINT"E = ";E
580 RETURN
500 PRINT"OVERLAY #2 ENTERED"
510 PRINT A
50C=C+1
530 D=D+ 1
540 E= E +) Contents
550 REM of File 2
560 REM
570 REM
580 REM
590 PRINT"C, D, E ";C,D,E
600 RETURN
500 PRINT"OVERLAY #3 ENTERED"
510 A=A+l Contents
520 PRINT"A = ";A of File 3
530 RETURN
00100 ORG OF000H
00110 OPEN EQU 44240 i DOS ADDRESS
00120 READ EQU 443 6H ; DOS ADDRESS
00130 ERN EQU 12 ; DISK DCB ADDRESS
00140 NRN EQU 10 3 DISK DCB ADDRESS
00150 EOF EQU 8 ; DISK DCB ADDRESS
00160 ;*
00170 ;* ENTRY POINT FOR OVERLAY LOADING OF BASIC PROGRAMS
00180 ;*
00190 PUSH AF i SAVE ALL RECISTERS
00200 PUSH BC
00210 PUSH DE
00220 PUSH HL
00230 LD HL,-1 3 INLTIALIZE SECTOR COUNT
00240 LD (RCOUNT) ,HL i TO MINUS 1
00250 LD HL,00 3 SO WE CAN LOAD CsP
00260 ADD HL, SP ; LOAD CSP
(CSP) ,HL i SAVE FOR RESTORATION
DE, (4121H) ; LINE NO TO START OVERLAY
(LINE) ,DE i SAVE FOR FUTURE REF
A, (40AFH) ; FUNCTION VALUE TYPE
(TYPE),A ; MUST BE RESTORED AT END
FILL DCB BEFORE MOVING NAME INTO IT
8,32 ; NO. OF BYTES TO BLANK
HL,DCB ; DCB ADDR
A,201 3 ASCIL BLANK
(ML) ,A i MOVE ONE BLANK
HL i BUMP TO NEXT WORD
00400 DJNZ BFL ; LOOP TILL DCB FILLED
00410 ;*
00420 ;* GET OVERLAY FILE NAME FROM VARIABLE F$
00430 ;* MOVE IT INTO THE BLANKED DCB
00440 ;*
00450 LD HL, LEN i STRING FOR COMMON VAR NAME
00460 CALL 25401 ; GET ADDR OF F$
00470 RST 200 i MAKE SURE IT’S A STRING
00480 Jr Z,0K 3 ZERO LF STRING
00490 JP ERR ; WRONG TYPE OF VARIABLE
00500 0K LD HL,(4121H) i GET ADDR OF FS INTO HL
00510 LD UE,DCB ; DCB ADDR
00520 CALL 29CBH ; MOVE FS NAME TO DCB
00530 ;*
00540 ;* INITIALIZE ALL LOCAL VARIABLES
00550 ;
00560 LD A,0 ; SET PASS FLAG TO ZERO

vus70
Q0580
005%
00600
00610
00620
00630
00640
00650
00660
00670
006 80
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840

00850 ;

00860

Loop

LD (PF),A
LD (FL),A

PASS FLAG

SECTOR BUFFER INDEX

LOCATE ADDR OF VARIABLE ASSIGND TO FUNCTION CALL. [T
MUST BE RECOMPUTED AFTER THE OVERLAY HAS BEEN LOADED
BECAUSE THE VLT WILL HAVE BEEN MOVED. NEXT, ALLOCATE
SPACE IN THE FSL FOR THE SECTOR BUFFER USED FOR

READING THE OVERLAY FILE.

LD HL,00

ADD HL,SP

PUSH HL

LD BC, 20

ADD HL,BC

LD (VARADR) ,HL
PoP HL

LD 8C,-256
ADD HL,BC

LD (BADDR) ,HL
LD SP,HL

PUSH ML

LD DE, (40F9H)
LD (CEPST) ,DE
LD HL, (40FBH)
XOR A

SBC HL,DE

LD (LSVLT) HL
LD DE,(LINE)
CALL 1B2CH

LD (4OF9H),BC

COMPUTE LENGTH OF VLT

LD DE, (CEPST)
LD HL,{(40FDH)
XOR A

SBC HL,DE

INC HL

LD (LVLT) ,HL

POP HL

LD BC,-50

ADD HL,BC

Lb BC, (LVLT)

XOR A

SBC HL,BC

LD (SNVLT) ,HL
PUSH HL

POP DE

LD HL,(CEPST)
LD 8C,(LVLT)

LDIR

BEGIN OVERLAY LOADING

1D DE,DCB

LD HL, (BADDR)
LD BC,0

CALL OPEN

CALL GNL

JR z,00T
CALL ATOB

JR LOOP

UVERLAY STATEMENTS HAVE BEEN

TO VLT AFTER MOVING IT DOWN (

1D HL, (SNVLT)
LD DE, (40F 9H)
INC DE

INC DE

LD (40F9H) ,DE
LD BC, (LVLT)
LDIR

e DE

PUSH DE

LD HL, (40F9H)
LD BC,(LSVLT)
ADD HL,BC

LD (4OFBH) ,HL
PoP HL

LD (40FDH) ,HL

SO WE CAN LOAD CSP

HL = CSP

SAVE CSP

AMT TO BACKSPACE CSP
GIVES CSP - 20 OR ADDR
OF FUNCTION VARIABLE
SAVE STK ADDR OF VAR
RESTORE CSP TO HL

ANT OF SPACE TO ALLOCTA1
IN FSL FOR SECTOR BUFFR
COMPUTE NEW CSP

START OF SECTOR BUFFER
IS ALSO NEW CSP

CURRENT END OF PST

SAVE FOR COMPUTATIONS
START OF ARRAYS

CLEAR CARRY

COMPUTE OFFSET FROM STAY
OF VLT TO START OF ARRAY
SAVE OFFSET

FIND ADDR OF LINE WHERE
OVERLAY STARTS IN PST
MAKE IT TEMP END OF PST

ORGINAL END OF PST
START OF FSL

CLEAR CARRY

GIVES LNG -1 OF VLT
CORRECT FOR -1

SAVE LENGHT OF VLT
RESTORE CSP TO HL
ASSUMED STK LENG NEEDED
GIVE END OF TEMP VLT
NOW, SUBTRACT LENGTH OF
VLT FROM END TO GET STAR
ADDRES S

SAVE END OF TENP VLT
SO WE CAN

LOAD IT INTO DE

START OF OLD PST

SIZE OF VLT

MOVE VLT TO TEMP LOC.

DCB FOR OVERLAY FILE
SECTOR BUFF ADDR

SPECIFY SECTOR /O

OPEN OVERLAY FILE

GET NEXT LINE FROM FILE
ZERO IF NO MORE LINES

IN OVERLAY FILE

ADD LINE TO PST

LOOP TILL FILE EXHAUSTZD

ADDED. RESET POINTERS
ADJACENT TO PST).

START OF TEMP VLT
CURRENT END OF PST
LEAVE TWO BYTES

OF ZEROS AT END OF PST
SAVE START ADDR OF NEW Vi
LENGTH OF VLT

MOVE VLT TO END OF PST
GIVES ADDR OF FLS

SAVE FSL ADDR

START OF VLT

PLUS LNG OF SINP VAR
GIVES ADDR OF ARRAYS PTi
SAVE NEW ARRAYS POINTER

i HL = NEW FSL ADDR

UPDATE FSL

COMPUTE DISTANCE VLT HAS MOVED AND UPDATE THE ADDR OF
THE FUNCTLON VARIABLE BEING CARRIED ON THE STACK.

01490
01500
01510
0152

01530
01540
01550
01560
01570
01580
015%
01600
01610
01620
01630

01650
01660

02350

02400

uP
UPl

GNL10

GNL1S

PoP
ADD

PUSH

DE,(CEPST)
HL, (40F9H)
18H

NC,UP

HL

DE

A

HL

DE

urPl

A

HL,DE

HL

HL, (VARADR)
c,(HL)

HL
B, (HL)

HL
HL,BC

HL
DE

HL, (VARADR)
(HL) ,E

HL

(HL),D

TO IT"S ORGINAL

A,(TYPE)
(40AFH) ,A
HL,(CSP)
SP,HL

HL

DE

BC

AF

ORG IANL
CURRENT
COMPARE
NEW VLT
REVERSE

START OF VLT
START OF VLT
THE ADDRESSES
WAS MOVED UP
OPERANDS

3 CLEAR CARRY
3 RERSTORE OPERANDS

GO COMPUTE DISTANCE
CLEAR CARRY FOR SUB
COMPUTE AMT VLT HAS MOVED
SAVE DISTANCE

THEN ADDR IT TO ADDR
CARRLED ON STK

BUMP TO MSB OF ADDR

BC = ADDR OF VAR THAT WAS
CARRIED ON STK

GET DISPLACEMENT

GET NEW ADDR (BECAUSE VLT
HAS BEEN MOVED

S0 WE CAN LOAD IT INTO
LOAD NEW ADDR INTO DE
REFETCH STK ADDR

LSB OF FUNCTION VAR ADDR
NEXT BYTE ADDR ON STK
MSB OF FUNCTION VAR ADDR

VALUE

GET MODE FLAG WHEN ENTERED
RESTORE MODE TO ORGIANL
RESET CSP

TO IT°S ORGINAL VALUE
RESTORE REGISTERS

3 RETURN TO BASIC

GETS NEXT LINE OF BASIC PROGRAM FROM A FILE

MOVES IT TO BASIC LINE BUFFER AREA AND THEN
TOKENIZES IT.
FILE IS ASSUMED TO BE IN ASCII FORMAT. LINES ARE
TERMINATED BY A CARRIAGE RET. (OD).

LD
OR
JR
LD
LD
LD
INC
LD
LD
LD
LD
CaLL
LD
LD
LD
LD
XOR
SBC
JR
LD
Lo
LD
SUB
JR
XOR
RET
LD
LD
LD
LD
ADD
LD

Lo
L
INC
INC
JR

INC
SUB
JR

DEC

LD
LD
OR

A,(PF)

A
NZ,GNLS

A0

(F1) ,A

HL, (RCOUNT)
HL
(RCOUNT) ,HL
BC,0

DE,DCB

HL, (BADDR)
READ

Al

(PF),A

T, (RCOUNT)
HL, (DCB+ERN)
A

HL,DE
NZ,GNL10
A,(DCB+EOF)

HL, (BADDR)
A, (F1)

C,A

8,0

HL,BC

DE, (40ATH)
A, (HL)
(DE) ,A

DE

c

C,GNL

HL

ODH
NZ,GNL1S
DE

GET PASS FLAG

IS IT TIME TO READ SECTCR
NO IF NON-ZERO

RESET SECTOR BUFF INDEX
TO ZERC

PREPARE TO TEST FOR

END OF FILE. BUMP COUNT
OF SECTORS READ

READ NEXT SECTOR

OVERLAY DCB ADDR

SECTOR BUFF ADDR

READ NEXT SECTOR

RESET PASS FLAG

TO DATA IN BUFFER

NOW TEST FOR END OF FILE
LAST SECTOR NO FROM DCB
CLEAR CARRY FOR SUB

HAS LAST SECTOR BEEN READ
NON-ZERO IF NOT LAST SECT
IN LAST SECTOR. END OF D
DATA REACHED YET?
CURRENT SECTOR INDEX
MUST BE LE TO ECD INDEX
CARRY IF NOT END OF DATA
SICNAL END OF FILE

RET TO MAIN PCM

SECTOR BUFF ADDR

CURRENT BUFF INDEX

FOR 16 BIT AIRTH

DITTO

CURRENT LINE ADDR IN BUFF
BA~ . LINE BUFF ADDR
MOVE LINE FROM SECT BUFF
TO BASIC LINE BUFF

BUMP DEST ADDR

COUNT 1 CHAR MOVED

JMP IF LINE OVERFLOWS
SECTOR

NO OVERFLOW, BUMP FETCH
ADDR. TEST FOR END OF LINE
LOOP TILL END OF LINE
BKSPC 1 CHAR IN LINE BUFF
AND TERM IT WITH A ZERO
SAVE ENDING BUFF INDEX
FOR NEXT LINE

SIGNAL MORE DATA

RET

.

RET TO CALLER

Bl TOKENIZE LINE IN BUFFER. THEN ADD IT TO PST

.
ATOB LD HL, (40A7H)
CALL 1ESAH
PUSH DE
PUSH KL
LD HL,(LINE)
RST 188
R Z,ATOBS
JR NC, ERR
.
ATOBS POP HL
CALL 1BCOH
LD HL, (40F9H)
PUSH HL
ADD HL,BC
LD (40F9H) ,HL
PUSH HL
POP DE
.
i
3* THEN MOVE BINARY LINE NO.
.
B
POP HL
LD (HL) ,E
INC HL
LD (HL),D
INC HL
POP DE
LD (HL) ,E
INC KL
LD (HL),D
NC HL
EX DE,HL
LD HL, (40A7H)
DEC HL
DEC HL
ATOBIO LD A,(HL)
LD (DE) ,A
INC HL
INC DE
OR A
JR NZ,ATOB10
LD (DE) ,A
INC DE
LD (DE) ,A
RET

POP AF
rop AF
POP AF
LD HL,0
ADD HL,SP
Lo BC,25
ADD HL,BC
LD SP,HL

ERRIO POP AF
POP AF
POP AF
POP AF
POP AF
LD A2
P 19978

i

;% CONSTANTS AND COUNTERS

e

LINE DERM 0

csp DERW 0

TYPE DEFB 0

LFN DERM “F$”
DEFB 0

DCB DEFS 32

BADDR DEFW 0

VARADR DEFW 0

ZEPST DERW 0

LVLT DEFW 0

SNVLT DEFW 0

LSVLT DEFW 0

PF DEFB 0

¥1 DEFE 0

RCOUNT DEFW -1
END

LINE BUFFER ADDR

GET BINARY LINE NO
SAVE IT

SAVE LINE BUFF ADDR
BEG OVERLAY LINE NO
COMPARED W/CURRENT LINE
OK IF EQUAL

ERR IF INCOMMING LESS
THAN OVERLAY LINE NO
RESTORE LINE ADDR
TOKENIZE LINE

CURRENT END OF PST
SAVE ADDR OF THIS LINE
ADD LNG OF NEW LINE
START OF NEXT LINE

SO WE CAN

LOAD IT INTO DE

UPDATE POINTER TO NEXT LINE IN NEW LINE BEING ADDED.

FOR THIS LINE TO PST.

ADDR OF THIS LINE IN PST
LSB OF ADDR NEXT LINE

MSB OF ADDR NEXT LINE
START OF BIN LINE NO
BINARY LINE NO
LSB OF LINE NO

MSB OF LINE NO

BUMP TO FIRST CHAR IN LINE
DE = PST FOR LINE
TOKENIZED LINE ADDR

GET A TOKENLIZED BYTE
MOVE IT TO PST

TEST OF EOS

3 JMP IF NOT END OF STAT.

i OF MACHINE ZEROS

RET TO CALLER

ERROR PROCESSNG - RECOVER STACK SPACE

CLEAR STACK

CLEAR STACK

CLEAR STACK
DEALLOCATE SECTOR BUFFER
csp

SIZE OF SECTOR BUFF
COMPUTE NEW CSP

SETUP NEW CSP

CLEAR STACK

CLEAR STACK

CLEAR STACK

CLEAR STACK

CLEAR STACK

CODE FOR SYNTAX ERROR
GIVE ERR, RTN TO BASIC

QVERLAY LINE NO
HOLDS CSP ON ENTRY
ORGINAL DATA TYPE
COMMON VARIABLE NAME

OVERLAY DCB

SECTOR BUFF ADDR ON STK
VARIABLE ADDR ON STK
CURRENT END OF PST
LENGTH OF VLT

START ADDR OF NEW VLT
LENGTH OF SIMP VAR VLT
PASS FLAG

SECTOR BUFF INDEX
COUNT OF SECTORS READ

57

Chapter 7

BASIC Decoded: New ROMs

The comments in chapter 8 are based on the original three
chip ROM set, if you have a 2 chip ROM configuration
your dissassembly will probably be slightly different.

Differences between the latest' MEM SIZE ?” ROMs and
the old ROMs are given below. Locations with an asterisk
next to them have different contents than the next chapter.

0050 0D DEC --- Enter no shift (OD)
0051 0D DEC --- Enter shift (OD)
0052 1F RRA --- Clear no shift (1F)
0053 1F RRA --- Clear shift (1F)

When running a Disassembler be careful to check the
page sequence where differences occur.

This comment chapter was designed to be used in
conjunction with adisassembler that produces 62 lines per
page. The Apparat NEWDOS plus Disassembler was
used during the books production.

* ASCII values

0054 010158

LD —- BREAK ns (01) / BREAK shift (0l) / up arrow ns (5B)

0057 1B DEC --- Up arrow shift (1B)

0058 0A LD -~ Down arrow no shift (0A)

0059 *00 NOP —- Down arrow shift (00)

005A 08 EX ——- Left arrow no shift (08)

005B 1809 JR --- Left arrow shift (18) / right arrow no shift (09)
005D 19 ADD —- Right arrow shift (19)

005E 2020 JR --- Space no shift (20) / space shift (20)

O0FC *Z0E01 LD —- Address of “R/S L2 BASIC” message

0105 4D LD ---M * MEM SIZE
0106 45 LD ---E

0107 4D LD --- M

0108 *2053 JR --- Space, S

010A *49 LD —=1

010B *5A LD — 2z

0l10C *45 LD —=E

58

010D *00

010E *52
010F *2F
0110 *53
0111 *204C
0113 *322042
0116 *41
0117 53
0118 *49
0119 *43
011A *0OD
011B *00
011C *C5

011D *010005
0120 *CD6000

0123 *Cl
0124 *0A
0125 *A3
0126 *C8
0127 *7A
0128 *07
0129 *07
012A *C3FEO03
0248 *0660
024F *0685
02E2 *20ED
02E4 *23

03FB *C31cC0l
caller.

0683 *20F1
1225 E7
1226 *300B
124D *g

1265 *F24312

2067 3E01
2069 329C40
206C *C37C20
206F CDCA4L
2072 *FE23
2074 *2006
2076 *CD8402
2079 *329C40
207c %28
207D *p7
207E *CCFE20
2081 *CA6921

2084 *F620
2086 *FE60
2088 *201B
208A *CDO12B
28D *FE04

LD

LD

JR
INC

JP

JR

RST

Message terminator
R

/

S

Space, L

2, space, B

* R/S L2 BASIC

oOHOP

Carriage return

Message terminator

Save active row address

Delay count value

Delay for 7.33 milliseconds * Debounce routine
Restore row address

And reload original flags from active row

Then combine current flag lists with original flag bits
Rtn to caller if zero because row was not active on 2nd test
Otherwise we have a legimately active row

Row index * 2

Row index * 4

Return to rest of keyboard driver routine

Now, delay for 476/703 microseconds
Then delay for 865/975 microseconds

If no match, skip to next program on cassette
We have a character match. Bump to next char of typed in name.

Go to debounce routine. If legimate char rtn to 3FE, else rtm t

Loop thru block move routine 128 times

Double precision or string
Jmp if double precision

Set status flags
No change in this comment

A = device code for printer * LPRINT routine
Set current system device to printer

DOS Exit * PRINT routine
Test for #

Jump if not PRINT #

Write header on cassette file * PRINT # routine

Set current system deice to cassette

Backspace over previous symbol in code string
Re-examine previous char in code string

If end of string write a Carrige Return

If end of string turn off cassette and return

Not end of string. Convert possible 40 to 60

Then test for @

Jmp if not PRINT @

Evaluate @ expressiom, result in DE * PRINT @ routine
A = MSB, test for @ value > 1023

59

208F
2092
2093
2096
2097
209A
2098
209D
20A0
20A1
20A2
20A3
20A5
20A6
20A8
20AB
20AD
20B0
20B1
20B3
2085
2087
20B9
20BC

20F6
213A
2166

226A
226B
226C
226D
226E

2C1F
2C21
2023
2024
2C27
2028
2C29
2C2A
2C2C
2C2F
2C32
2C33
2C34
2C35
2C36
2C37
2C3A
2C3D
2C40
2C43

2FFB
2FFD

60

*D24AL1E
*E5
*21003C
*19
*222040
*7B
*E63F
*32A640
*El
*CF
*2C
*18C7
*7E
*FEBF
*CABD2C
*FEBC
*CA3721
*E5
*FEC2
*2853
*FE3B
*285E
CD3723
*E3

*C37C20

*E6TF

*C38120

*00
*00
*

*00
*00

*D6B2
*2802
*AF
*Q12F23
*F5

*7E

*B7
*2807
*CD2723
*CD132A
*1A

*6F

*F1

*B7

*67
*222141
*CC4D1B
*210000
*CD9302

*DEC3
*C344B2

JP
PUSH
LD
ADD
LD

CcP
LD

JP

NOP
NOP
NOP
NOP
NOP

FC error if @ position > 1023

Save current code string addr

HL = starting addr of video buffer

All tab position

And save addr in video DCB as cursor addr

Then get position within line

And truncate it to 63

Then save as current position within line
Restore code string addr (starting addr of item list)
But make sure a comma follows the tab position
Dc 2¢ “,”

Go get first variable from item list

Reload next element from code string

Test for USING token

Jmp if USING token

Test for TAB token

Jmp if TAB token

Save current code string addr

Test for a comma

Go get next item if a comma

Not comma, test for semi-colon

Go get next item if semi-colon

Evaluate next item to be printed

Save current code string addr HL = addr of current item

And loop till end of statement (EOS)
Result in A-reg. Do not let it exceed 127
Process next of PRINT TAB statement

Remove
Erroneous
Test

For

FD error

Test for CLOAD? * CLOAD routine
Jmp if CLOAD?

Signal CLOAD

2C25: CPL A=-1 if CLOAD?, 0000 if CLOAD

2C26: INC HL position to file name Save CLOAD? / CLOAD flag
Get next element from code string. Should be file name
Set status flags

Jup if end of line

Evaluate expression (get file name)

Get addr of file name into DE

Get file name

And move it to L-reg

Restore CLOAD? / CLOAD flags

Set status register according to flags

H=CLOAD?/CLOAD flag, L=fite name

Save flag and file name in WRAl

If CLOAD call NEW routine to initialize system variables
This will cause the drive to be selected when

We look for leader and synch byte

Restore CLOAD? / CLOAD flag, file name

These instructions
Are not used by Level II

